Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc1lem1 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc1lem1 39474
Description: If 𝐹 has bounded derivative on (𝐴(,)𝐵) then a sequence of points in its image converges to its lim sup. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc1lem1.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc1lem1.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc1lem1.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc1lem1.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
ioodvbdlimc1lem1.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc1lem1.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc1lem1.m (𝜑𝑀 ∈ ℤ)
ioodvbdlimc1lem1.r (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
ioodvbdlimc1lem1.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
ioodvbdlimc1lem1.rcnv (𝜑𝑅 ∈ dom ⇝ )
ioodvbdlimc1lem1.k 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
Assertion
Ref Expression
ioodvbdlimc1lem1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Distinct variable groups:   𝐴,𝑖,𝑘,𝑥,𝑧   𝑦,𝐴,𝑖,𝑥,𝑧   𝐵,𝑖,𝑘,𝑥,𝑧   𝑦,𝐵   𝑖,𝐹,𝑗,𝑥   𝑘,𝐹,𝑧   𝑦,𝐹   𝑖,𝐾,𝑗   𝑘,𝐾   𝑦,𝐾   𝑖,𝑀,𝑗,𝑥   𝑘,𝑀   𝑅,𝑖,𝑗   𝑅,𝑘   𝑦,𝑅   𝑆,𝑖,𝑘,𝑥   𝜑,𝑖,𝑗,𝑥   𝜑,𝑘   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑗)   𝐵(𝑗)   𝑅(𝑥,𝑧)   𝑆(𝑦,𝑧,𝑗)   𝐾(𝑥,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem ioodvbdlimc1lem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 (ℤ𝑀) = (ℤ𝑀)
2 ioodvbdlimc1lem1.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
3 cncff 22615 . . . . . 6 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
42, 3syl 17 . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
54adantr 481 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
6 ioodvbdlimc1lem1.r . . . . 5 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
76ffvelrnda 6320 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) ∈ (𝐴(,)𝐵))
85, 7ffvelrnd 6321 . . 3 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝑅𝑗)) ∈ ℝ)
9 ioodvbdlimc1lem1.s . . 3 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
108, 9fmptd 6346 . 2 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
11 ssrab2 3671 . . . . 5 {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀)
12 ioodvbdlimc1lem1.k . . . . . 6 𝐾 = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
13 rpre 11790 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1413adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
15 fveq2 6153 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑥))
1615fveq2d 6157 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑧)) = (abs‘((ℝ D 𝐹)‘𝑥)))
1716cbvmptv 4715 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1817rneqi 5317 . . . . . . . . . . . . . . 15 ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1918supeq1i 8304 . . . . . . . . . . . . . 14 sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
20 ioodvbdlimc1lem1.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
21 ioodvbdlimc1lem1.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
22 ioodvbdlimc1lem1.altb . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 < 𝐵)
23 ioomidp 39174 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
2420, 21, 22, 23syl3anc 1323 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
25 ne0i 3902 . . . . . . . . . . . . . . . . 17 (((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
2624, 25syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
27 ioossre 12184 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴(,)𝐵) ⊆ ℝ
2827a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
29 dvfre 23633 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
304, 28, 29syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
31 ioodvbdlimc1lem1.dmdv . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3231feq2d 5993 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3330, 32mpbid 222 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
34 ax-resscn 9944 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
3534a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
3633, 35fssd 6019 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
3736ffvelrnda 6320 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
3837abscld 14116 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
39 ioodvbdlimc1lem1.dvbd . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
40 eqid 2621 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
41 eqid 2621 . . . . . . . . . . . . . . . 16 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
4226, 38, 39, 40, 41suprnmpt 38852 . . . . . . . . . . . . . . 15 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
4342simpld 475 . . . . . . . . . . . . . 14 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
4419, 43syl5eqel 2702 . . . . . . . . . . . . 13 (𝜑 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
4544adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
46 peano2re 10160 . . . . . . . . . . . 12 (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
48 0red 9992 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
49 1red 10006 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
5048, 49readdcld 10020 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
5144, 46syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
5248ltp1d 10905 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
5336, 24ffvelrnd 6321 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
5453abscld 14116 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
5553absge0d 14124 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
5642simprd 479 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
57 fveq2 6153 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
5857fveq2d 6157 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥)))
5919a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
6058, 59breq12d 4631 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
6160cbvralv 3162 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
6256, 61sylibr 224 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
63 fveq2 6153 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝐴 + 𝐵) / 2) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))
6463fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
6564breq1d 4628 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )))
6665rspcva 3296 . . . . . . . . . . . . . . . . 17 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6724, 62, 66syl2anc 692 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6848, 54, 44, 55, 67letrd 10145 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
6948, 44, 49, 68leadd1dd 10592 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
7048, 50, 51, 52, 69ltletrd 10148 . . . . . . . . . . . . 13 (𝜑 → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
7170gt0ne0d 10543 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
7271adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠ 0)
7314, 47, 72redivcld 10804 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
74 rpgt0 11795 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → 0 < 𝑥)
7574adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
7670adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
7714, 47, 75, 76divgt0d 10910 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 0 < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
7873, 77elrpd 11820 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+)
79 ioodvbdlimc1lem1.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
8079adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
81 ioodvbdlimc1lem1.rcnv . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
8281adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ dom ⇝ )
831climcau 14342 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ dom ⇝ ) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
8480, 82, 83syl2anc 692 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤)
85 breq2 4622 . . . . . . . . . . 11 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8685rexralbidv 3052 . . . . . . . . . 10 (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) → (∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤 ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
8786rspcva 3296 . . . . . . . . 9 (((𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ+ ∧ ∀𝑤 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < 𝑤) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
8878, 84, 87syl2anc 692 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
89 rabn0 3937 . . . . . . . 8 ({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅ ↔ ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
9088, 89sylibr 224 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅)
91 infssuzcl 11723 . . . . . . 7 (({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆ (ℤ𝑀) ∧ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
9211, 90, 91sylancr 694 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
9312, 92syl5eqel 2702 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
9411, 93sseldi 3585 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐾 ∈ (ℤ𝑀))
959a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
96 fveq2 6153 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑅𝑗) = (𝑅𝑖))
9796fveq2d 6157 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝑖)))
9897adantl 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ 𝑗 = 𝑖) → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝑖)))
99 uzss 11659 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
10094, 99syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (ℤ𝐾) ⊆ (ℤ𝑀))
101100sselda 3587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑖 ∈ (ℤ𝑀))
1024ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
1036ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
104103, 101ffvelrnd 6321 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
105102, 104ffvelrnd 6321 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℝ)
10695, 98, 101, 105fvmptd 6250 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝑖) = (𝐹‘(𝑅𝑖)))
107 fveq2 6153 . . . . . . . . . . 11 (𝑗 = 𝐾 → (𝑅𝑗) = (𝑅𝐾))
108107fveq2d 6157 . . . . . . . . . 10 (𝑗 = 𝐾 → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝐾)))
109108adantl 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ 𝑗 = 𝐾) → (𝐹‘(𝑅𝑗)) = (𝐹‘(𝑅𝐾)))
11094adantr 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
111103, 110ffvelrnd 6321 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
112102, 111ffvelrnd 6321 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℝ)
11395, 109, 110, 112fvmptd 6250 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑆𝐾) = (𝐹‘(𝑅𝐾)))
114106, 113oveq12d 6628 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑆𝑖) − (𝑆𝐾)) = ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))))
115114fveq2d 6157 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) = (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))))
116105recnd 10019 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
117112recnd 10019 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
118116, 117subcld 10343 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) ∈ ℂ)
119118abscld 14116 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
120119adantr 481 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
12144ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
122121adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
1236adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
124123, 94ffvelrnd 6321 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
12527, 124sseldi 3585 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ)
126125ad2antrr 761 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
12727, 104sseldi 3585 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ)
128127adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
129126, 128resubcld 10409 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ)
130122, 129remulcld 10021 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
13113ad3antlr 766 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝑥 ∈ ℝ)
132116adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝑖)) ∈ ℂ)
133117adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝐹‘(𝑅𝐾)) ∈ ℂ)
134132, 133abssubd 14133 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))))
13520ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐴 ∈ ℝ)
13621ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ)
137102adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
13831ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
13962ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
140104adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ (𝐴(,)𝐵))
141127rexrd 10040 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℝ*)
142141adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ*)
14321rexrd 10040 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
144143ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐵 ∈ ℝ*)
145144adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 𝐵 ∈ ℝ*)
146 simpr 477 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) < (𝑅𝐾))
14720rexrd 10040 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
148147adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
149143adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
150 iooltub 39169 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝐾) ∈ (𝐴(,)𝐵)) → (𝑅𝐾) < 𝐵)
151148, 149, 124, 150syl3anc 1323 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) < 𝐵)
152151ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) < 𝐵)
153142, 145, 126, 146, 152eliood 39154 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ((𝑅𝑖)(,)𝐵))
154135, 136, 137, 138, 122, 139, 140, 153dvbdfbdioolem1 39471 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) ∧ (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
155154simpld 475 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
156134, 155eqbrtrd 4640 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))))
157122, 46syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
158157, 129remulcld 10021 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) ∈ ℝ)
159128, 126posdifd 10565 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝑖) < (𝑅𝐾) ↔ 0 < ((𝑅𝐾) − (𝑅𝑖))))
160146, 159mpbid 222 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → 0 < ((𝑅𝐾) − (𝑅𝑖)))
161129, 160elrpd 11820 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ∈ ℝ+)
162122ltp1d 10905 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
163122, 157, 161, 162ltmul1dd 11878 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))))
16427, 111sseldi 3585 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝐾) ∈ ℝ)
165127, 164resubcld 10409 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
166165recnd 10019 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℂ)
167166abscld 14116 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
168167adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
16973ad2antrr 761 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
170129leabsd 14094 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝐾) − (𝑅𝑖))))
171126recnd 10019 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝐾) ∈ ℂ)
172127recnd 10019 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) ∈ ℂ)
173172adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (𝑅𝑖) ∈ ℂ)
174171, 173abssubd 14133 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝐾) − (𝑅𝑖))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
175170, 174breqtrd 4644 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
176 fveq2 6153 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → (ℤ𝑘) = (ℤ𝐾))
177 fveq2 6153 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐾 → (𝑅𝑘) = (𝑅𝐾))
178177oveq2d 6626 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐾 → ((𝑅𝑖) − (𝑅𝑘)) = ((𝑅𝑖) − (𝑅𝐾)))
179178fveq2d 6157 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐾 → (abs‘((𝑅𝑖) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝐾))))
180179breq1d 4628 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐾 → ((abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
181176, 180raleqbidv 3144 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
182181elrab 3350 . . . . . . . . . . . . . . 15 (𝐾 ∈ {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ↔ (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
18393, 182sylib 208 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
184183simprd 479 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
185184r19.21bi 2927 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
186185adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
187129, 168, 169, 175, 186lelttrd 10146 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
18851, 70elrpd 11820 . . . . . . . . . . . 12 (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
189188ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
190129, 131, 189ltmuldiv2d 11871 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥 ↔ ((𝑅𝐾) − (𝑅𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
191187, 190mpbird 247 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
192130, 158, 131, 163, 191lttrd 10149 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝐾) − (𝑅𝑖))) < 𝑥)
193120, 130, 131, 156, 192lelttrd 10146 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
194 fveq2 6153 . . . . . . . . . . . . 13 ((𝑅𝑖) = (𝑅𝐾) → (𝐹‘(𝑅𝑖)) = (𝐹‘(𝑅𝐾)))
195194oveq1d 6625 . . . . . . . . . . . 12 ((𝑅𝑖) = (𝑅𝐾) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))))
196117subidd 10331 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → ((𝐹‘(𝑅𝐾)) − (𝐹‘(𝑅𝐾))) = 0)
197195, 196sylan9eqr 2677 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → ((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾))) = 0)
198197abs00bd 13972 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) = 0)
19974ad3antlr 766 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → 0 < 𝑥)
200198, 199eqbrtrd 4640 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
201200adantlr 750 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
202 simpll 789 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)))
203164ad2antrr 761 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ∈ ℝ)
204127ad2antrr 761 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝑖) ∈ ℝ)
205 id 22 . . . . . . . . . . . . 13 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝐾) = (𝑅𝑖))
206205eqcomd 2627 . . . . . . . . . . . 12 ((𝑅𝐾) = (𝑅𝑖) → (𝑅𝑖) = (𝑅𝐾))
207206necon3bi 2816 . . . . . . . . . . 11 (¬ (𝑅𝑖) = (𝑅𝐾) → (𝑅𝐾) ≠ (𝑅𝑖))
208207adantl 482 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) ≠ (𝑅𝑖))
209 simplr 791 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → ¬ (𝑅𝑖) < (𝑅𝐾))
210203, 204, 208, 209lttri5d 39000 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (𝑅𝐾) < (𝑅𝑖))
211119adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ∈ ℝ)
212121, 165remulcld 10021 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
213212adantr 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
21413ad3antlr 766 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝑥 ∈ ℝ)
21520ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐴 ∈ ℝ)
21621ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ)
217102adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
21831ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
21944ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ)
22062ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))
221111adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ (𝐴(,)𝐵))
222125rexrd 10040 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑅𝐾) ∈ ℝ*)
223222ad2antrr 761 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ*)
224216rexrd 10040 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 𝐵 ∈ ℝ*)
225127adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ℝ)
226 simpr 477 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) < (𝑅𝑖))
227147ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → 𝐴 ∈ ℝ*)
228 iooltub 39169 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑅𝑖) ∈ (𝐴(,)𝐵)) → (𝑅𝑖) < 𝐵)
229227, 144, 104, 228syl3anc 1323 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (𝑅𝑖) < 𝐵)
230229adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) < 𝐵)
231223, 224, 225, 226, 230eliood 39154 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝑖) ∈ ((𝑅𝐾)(,)𝐵))
232215, 216, 217, 218, 219, 220, 221, 231dvbdfbdioolem1 39471 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) ∧ (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵𝐴))))
233232simpld 475 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))))
234 1red 10006 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 1 ∈ ℝ)
235219, 234readdcld 10020 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
236164adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑅𝐾) ∈ ℝ)
237225, 236resubcld 10409 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ)
238235, 237remulcld 10021 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
239219, 46syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ)
240236, 225posdifd 10565 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝐾) < (𝑅𝑖) ↔ 0 < ((𝑅𝑖) − (𝑅𝐾))))
241226, 240mpbid 222 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → 0 < ((𝑅𝑖) − (𝑅𝐾)))
242237, 241elrpd 11820 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ∈ ℝ+)
243219ltp1d 10905 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))
244219, 239, 242, 243ltmul1dd 11878 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))))
245167adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) ∈ ℝ)
24673ad2antrr 761 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈ ℝ)
247237leabsd 14094 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) ≤ (abs‘((𝑅𝑖) − (𝑅𝐾))))
248185adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝑅𝑖) − (𝑅𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
249237, 245, 246, 247, 248lelttrd 10146 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
250188ad3antrrr 765 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈ ℝ+)
251237, 214, 250ltmuldiv2d 11871 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥 ↔ ((𝑅𝑖) − (𝑅𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
252249, 251mpbird 247 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
253213, 238, 214, 244, 252lttrd 10149 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅𝑖) − (𝑅𝐾))) < 𝑥)
254211, 213, 214, 233, 253lelttrd 10146 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ (𝑅𝐾) < (𝑅𝑖)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
255202, 210, 254syl2anc 692 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) ∧ ¬ (𝑅𝑖) = (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
256201, 255pm2.61dan 831 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) ∧ ¬ (𝑅𝑖) < (𝑅𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
257193, 256pm2.61dan 831 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝐹‘(𝑅𝑖)) − (𝐹‘(𝑅𝐾)))) < 𝑥)
258115, 257eqbrtrd 4640 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑖 ∈ (ℤ𝐾)) → (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
259258ralrimiva 2961 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥)
260 fveq2 6153 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑆𝑘) = (𝑆𝐾))
261260oveq2d 6626 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑆𝑖) − (𝑆𝑘)) = ((𝑆𝑖) − (𝑆𝐾)))
262261fveq2d 6157 . . . . . . 7 (𝑘 = 𝐾 → (abs‘((𝑆𝑖) − (𝑆𝑘))) = (abs‘((𝑆𝑖) − (𝑆𝐾))))
263262breq1d 4628 . . . . . 6 (𝑘 = 𝐾 → ((abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ (abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
264176, 263raleqbidv 3144 . . . . 5 (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥 ↔ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥))
265264rspcev 3298 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ ∀𝑖 ∈ (ℤ𝐾)(abs‘((𝑆𝑖) − (𝑆𝐾))) < 𝑥) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
26694, 259, 265syl2anc 692 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
267266ralrimiva 2961 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ (ℤ𝑀)∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑆𝑖) − (𝑆𝑘))) < 𝑥)
2681, 10, 267caurcvg 14348 1 (𝜑𝑆 ⇝ (lim sup‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  wss 3559  c0 3896   class class class wbr 4618  cmpt 4678  dom cdm 5079  ran crn 5080  wf 5848  cfv 5852  (class class class)co 6610  supcsup 8297  infcinf 8298  cc 9885  cr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892  *cxr 10024   < clt 10025  cle 10026  cmin 10217   / cdiv 10635  2c2 11021  cz 11328  cuz 11638  +crp 11783  (,)cioo 12124  abscabs 13915  lim supclsp 14142  cli 14156  cnccncf 22598   D cdv 23546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-cmp 21109  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550
This theorem is referenced by:  ioodvbdlimc1lem2  39475  ioodvbdlimc2lem  39477
  Copyright terms: Public domain W3C validator