![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt4 | Unicode version |
Description: 1 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
1lt4 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 9106 |
. 2
![]() ![]() ![]() ![]() | |
2 | 2lt4 9110 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1re 7974 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2re 9007 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 4re 9014 |
. . 3
![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | lttri 8080 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 2, 6 | mp2an 426 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 4018 ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-addass 7931 ax-i2m1 7934 ax-0lt1 7935 ax-0id 7937 ax-rnegex 7938 ax-pre-lttrn 7943 ax-pre-ltadd 7945 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4647 df-iota 5193 df-fv 5239 df-ov 5894 df-pnf 8012 df-mnf 8013 df-ltxr 8015 df-2 8996 df-3 8997 df-4 8998 |
This theorem is referenced by: 1lt5 9115 fldiv4p1lem1div2 10323 flodddiv4 11957 starvndxnbasendx 12619 m1lgs 14836 |
Copyright terms: Public domain | W3C validator |