ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logrpap0b Unicode version

Theorem logrpap0b 14754
Description: The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.)
Assertion
Ref Expression
logrpap0b  |-  ( A  e.  RR+  ->  ( A #  1  <->  ( log `  A
) #  0 ) )

Proof of Theorem logrpap0b
StepHypRef Expression
1 1rp 9687 . . . . 5  |-  1  e.  RR+
2 logltb 14752 . . . . 5  |-  ( ( A  e.  RR+  /\  1  e.  RR+ )  ->  ( A  <  1  <->  ( log `  A )  <  ( log `  1 ) ) )
31, 2mpan2 425 . . . 4  |-  ( A  e.  RR+  ->  ( A  <  1  <->  ( log `  A )  <  ( log `  1 ) ) )
4 log1 14744 . . . . 5  |-  ( log `  1 )  =  0
54breq2i 4026 . . . 4  |-  ( ( log `  A )  <  ( log `  1
)  <->  ( log `  A
)  <  0 )
63, 5bitrdi 196 . . 3  |-  ( A  e.  RR+  ->  ( A  <  1  <->  ( log `  A )  <  0
) )
7 logltb 14752 . . . . 5  |-  ( ( 1  e.  RR+  /\  A  e.  RR+ )  ->  (
1  <  A  <->  ( log `  1 )  <  ( log `  A ) ) )
81, 7mpan 424 . . . 4  |-  ( A  e.  RR+  ->  ( 1  <  A  <->  ( log `  1 )  <  ( log `  A ) ) )
94breq1i 4025 . . . 4  |-  ( ( log `  1 )  <  ( log `  A
)  <->  0  <  ( log `  A ) )
108, 9bitrdi 196 . . 3  |-  ( A  e.  RR+  ->  ( 1  <  A  <->  0  <  ( log `  A ) ) )
116, 10orbi12d 794 . 2  |-  ( A  e.  RR+  ->  ( ( A  <  1  \/  1  <  A )  <-> 
( ( log `  A
)  <  0  \/  0  <  ( log `  A
) ) ) )
12 rpre 9690 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR )
13 1re 7986 . . 3  |-  1  e.  RR
14 reaplt 8575 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A #  1  <->  ( A  <  1  \/  1  <  A ) ) )
1512, 13, 14sylancl 413 . 2  |-  ( A  e.  RR+  ->  ( A #  1  <->  ( A  <  1  \/  1  < 
A ) ) )
16 relogcl 14740 . . 3  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
17 0re 7987 . . 3  |-  0  e.  RR
18 reaplt 8575 . . 3  |-  ( ( ( log `  A
)  e.  RR  /\  0  e.  RR )  ->  ( ( log `  A
) #  0  <->  ( ( log `  A )  <  0  \/  0  < 
( log `  A
) ) ) )
1916, 17, 18sylancl 413 . 2  |-  ( A  e.  RR+  ->  ( ( log `  A ) #  0  <->  ( ( log `  A )  <  0  \/  0  <  ( log `  A ) ) ) )
2011, 15, 193bitr4d 220 1  |-  ( A  e.  RR+  ->  ( A #  1  <->  ( log `  A
) #  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    e. wcel 2160   class class class wbr 4018   ` cfv 5235   RRcr 7840   0cc0 7841   1c1 7842    < clt 8022   # cap 8568   RR+crp 9683   logclog 14734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961  ax-pre-suploc 7962  ax-addf 7963  ax-mulf 7964
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-of 6106  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-frec 6416  df-1o 6441  df-oadd 6445  df-er 6559  df-map 6676  df-pm 6677  df-en 6767  df-dom 6768  df-fin 6769  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-xneg 9802  df-xadd 9803  df-ioo 9922  df-ico 9924  df-icc 9925  df-fz 10039  df-fzo 10173  df-seqfrec 10477  df-exp 10551  df-fac 10738  df-bc 10760  df-ihash 10788  df-shft 10856  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319  df-sumdc 11394  df-ef 11688  df-e 11689  df-rest 12746  df-topgen 12765  df-psmet 13856  df-xmet 13857  df-met 13858  df-bl 13859  df-mopn 13860  df-top 13955  df-topon 13968  df-bases 14000  df-ntr 14053  df-cn 14145  df-cnp 14146  df-tx 14210  df-cncf 14515  df-limced 14582  df-dvap 14583  df-relog 14736
This theorem is referenced by:  logrpap0  14755  logrpap0d  14756
  Copyright terms: Public domain W3C validator