ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshft Unicode version

Theorem icoshft 10056
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 8065 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elico2 10003 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( X  e.  ( A [,) B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <  B ) ) )
31, 2sylan2 286 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,) B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <  B ) ) )
43biimpd 144 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  A  <_  X  /\  X  <  B
) ) )
543adant3 1019 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  A  <_  X  /\  X  < 
B ) ) )
6 3anass 984 . . 3  |-  ( ( X  e.  RR  /\  A  <_  X  /\  X  <  B )  <->  ( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) ) )
75, 6imbitrdi 161 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) ) ) )
8 leadd1 8449 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) )
983com12 1209 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) )
1093expib 1208 . . . . . . . 8  |-  ( X  e.  RR  ->  (
( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X 
<->  ( A  +  C
)  <_  ( X  +  C ) ) ) )
1110com12 30 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C ) ) ) )
12113adant2 1018 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) ) )
1312imp 124 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( A  <_  X 
<->  ( A  +  C
)  <_  ( X  +  C ) ) )
14 ltadd1 8448 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C )
) )
15143expib 1208 . . . . . . . 8  |-  ( X  e.  RR  ->  (
( B  e.  RR  /\  C  e.  RR )  ->  ( X  < 
B  <->  ( X  +  C )  <  ( B  +  C )
) ) )
1615com12 30 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C ) ) ) )
17163adant1 1017 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C )
) ) )
1817imp 124 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( X  < 
B  <->  ( X  +  C )  <  ( B  +  C )
) )
1913, 18anbi12d 473 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( ( A  <_  X  /\  X  <  B )  <->  ( ( A  +  C )  <_  ( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
2019pm5.32da 452 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) )  <->  ( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) ) )
21 readdcl 7998 . . . . . . . 8  |-  ( ( X  e.  RR  /\  C  e.  RR )  ->  ( X  +  C
)  e.  RR )
2221expcom 116 . . . . . . 7  |-  ( C  e.  RR  ->  ( X  e.  RR  ->  ( X  +  C )  e.  RR ) )
2322anim1d 336 . . . . . 6  |-  ( C  e.  RR  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) ) )
24 3anass 984 . . . . . 6  |-  ( ( ( X  +  C
)  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) )  <->  ( ( X  +  C )  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) )
2523, 24imbitrrdi 162 . . . . 5  |-  ( C  e.  RR  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
26253ad2ant3 1022 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
27 readdcl 7998 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
28273adant2 1018 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
29 readdcl 7998 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
30293adant1 1017 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
31 rexr 8065 . . . . . . 7  |-  ( ( B  +  C )  e.  RR  ->  ( B  +  C )  e.  RR* )
32 elico2 10003 . . . . . . 7  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  <-> 
( ( X  +  C )  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) )
3331, 32sylan2 286 . . . . . 6  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
3433biimprd 158 . . . . 5  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_  ( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
)  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
3528, 30, 34syl2anc 411 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( X  +  C )  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )
3626, 35syld 45 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
3720, 36sylbid 150 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) )  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
387, 37syld 45 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871    + caddc 7875   RR*cxr 8053    < clt 8054    <_ cle 8055   [,)cico 9956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-ico 9960
This theorem is referenced by:  icoshftf1o  10057
  Copyright terms: Public domain W3C validator