ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshft Unicode version

Theorem icoshft 10182
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 8188 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elico2 10129 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( X  e.  ( A [,) B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <  B ) ) )
31, 2sylan2 286 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,) B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <  B ) ) )
43biimpd 144 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  A  <_  X  /\  X  <  B
) ) )
543adant3 1041 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  A  <_  X  /\  X  < 
B ) ) )
6 3anass 1006 . . 3  |-  ( ( X  e.  RR  /\  A  <_  X  /\  X  <  B )  <->  ( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) ) )
75, 6imbitrdi 161 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) ) ) )
8 leadd1 8573 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) )
983com12 1231 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) )
1093expib 1230 . . . . . . . 8  |-  ( X  e.  RR  ->  (
( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X 
<->  ( A  +  C
)  <_  ( X  +  C ) ) ) )
1110com12 30 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C ) ) ) )
12113adant2 1040 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) ) )
1312imp 124 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( A  <_  X 
<->  ( A  +  C
)  <_  ( X  +  C ) ) )
14 ltadd1 8572 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C )
) )
15143expib 1230 . . . . . . . 8  |-  ( X  e.  RR  ->  (
( B  e.  RR  /\  C  e.  RR )  ->  ( X  < 
B  <->  ( X  +  C )  <  ( B  +  C )
) ) )
1615com12 30 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C ) ) ) )
17163adant1 1039 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C )
) ) )
1817imp 124 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( X  < 
B  <->  ( X  +  C )  <  ( B  +  C )
) )
1913, 18anbi12d 473 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( ( A  <_  X  /\  X  <  B )  <->  ( ( A  +  C )  <_  ( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
2019pm5.32da 452 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) )  <->  ( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) ) )
21 readdcl 8121 . . . . . . . 8  |-  ( ( X  e.  RR  /\  C  e.  RR )  ->  ( X  +  C
)  e.  RR )
2221expcom 116 . . . . . . 7  |-  ( C  e.  RR  ->  ( X  e.  RR  ->  ( X  +  C )  e.  RR ) )
2322anim1d 336 . . . . . 6  |-  ( C  e.  RR  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) ) )
24 3anass 1006 . . . . . 6  |-  ( ( ( X  +  C
)  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) )  <->  ( ( X  +  C )  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) )
2523, 24imbitrrdi 162 . . . . 5  |-  ( C  e.  RR  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
26253ad2ant3 1044 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
27 readdcl 8121 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
28273adant2 1040 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
29 readdcl 8121 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
30293adant1 1039 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
31 rexr 8188 . . . . . . 7  |-  ( ( B  +  C )  e.  RR  ->  ( B  +  C )  e.  RR* )
32 elico2 10129 . . . . . . 7  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  <-> 
( ( X  +  C )  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) )
3331, 32sylan2 286 . . . . . 6  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
3433biimprd 158 . . . . 5  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_  ( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
)  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
3528, 30, 34syl2anc 411 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( X  +  C )  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )
3626, 35syld 45 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
3720, 36sylbid 150 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) )  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
387, 37syld 45 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   RRcr 7994    + caddc 7998   RR*cxr 8176    < clt 8177    <_ cle 8178   [,)cico 10082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-ico 10086
This theorem is referenced by:  icoshftf1o  10183
  Copyright terms: Public domain W3C validator