Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > icoshft | Unicode version |
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
icoshft |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7944 | . . . . . 6 | |
2 | elico2 9873 | . . . . . 6 | |
3 | 1, 2 | sylan2 284 | . . . . 5 |
4 | 3 | biimpd 143 | . . . 4 |
5 | 4 | 3adant3 1007 | . . 3 |
6 | 3anass 972 | . . 3 | |
7 | 5, 6 | syl6ib 160 | . 2 |
8 | leadd1 8328 | . . . . . . . . . 10 | |
9 | 8 | 3com12 1197 | . . . . . . . . 9 |
10 | 9 | 3expib 1196 | . . . . . . . 8 |
11 | 10 | com12 30 | . . . . . . 7 |
12 | 11 | 3adant2 1006 | . . . . . 6 |
13 | 12 | imp 123 | . . . . 5 |
14 | ltadd1 8327 | . . . . . . . . 9 | |
15 | 14 | 3expib 1196 | . . . . . . . 8 |
16 | 15 | com12 30 | . . . . . . 7 |
17 | 16 | 3adant1 1005 | . . . . . 6 |
18 | 17 | imp 123 | . . . . 5 |
19 | 13, 18 | anbi12d 465 | . . . 4 |
20 | 19 | pm5.32da 448 | . . 3 |
21 | readdcl 7879 | . . . . . . . 8 | |
22 | 21 | expcom 115 | . . . . . . 7 |
23 | 22 | anim1d 334 | . . . . . 6 |
24 | 3anass 972 | . . . . . 6 | |
25 | 23, 24 | syl6ibr 161 | . . . . 5 |
26 | 25 | 3ad2ant3 1010 | . . . 4 |
27 | readdcl 7879 | . . . . . 6 | |
28 | 27 | 3adant2 1006 | . . . . 5 |
29 | readdcl 7879 | . . . . . 6 | |
30 | 29 | 3adant1 1005 | . . . . 5 |
31 | rexr 7944 | . . . . . . 7 | |
32 | elico2 9873 | . . . . . . 7 | |
33 | 31, 32 | sylan2 284 | . . . . . 6 |
34 | 33 | biimprd 157 | . . . . 5 |
35 | 28, 30, 34 | syl2anc 409 | . . . 4 |
36 | 26, 35 | syld 45 | . . 3 |
37 | 20, 36 | sylbid 149 | . 2 |
38 | 7, 37 | syld 45 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 caddc 7756 cxr 7932 clt 7933 cle 7934 cico 9826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-ico 9830 |
This theorem is referenced by: icoshftf1o 9927 |
Copyright terms: Public domain | W3C validator |