| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > icoshft | Unicode version | ||
| Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.) | 
| Ref | Expression | 
|---|---|
| icoshft | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexr 8072 | 
. . . . . 6
 | |
| 2 | elico2 10012 | 
. . . . . 6
 | |
| 3 | 1, 2 | sylan2 286 | 
. . . . 5
 | 
| 4 | 3 | biimpd 144 | 
. . . 4
 | 
| 5 | 4 | 3adant3 1019 | 
. . 3
 | 
| 6 | 3anass 984 | 
. . 3
 | |
| 7 | 5, 6 | imbitrdi 161 | 
. 2
 | 
| 8 | leadd1 8457 | 
. . . . . . . . . 10
 | |
| 9 | 8 | 3com12 1209 | 
. . . . . . . . 9
 | 
| 10 | 9 | 3expib 1208 | 
. . . . . . . 8
 | 
| 11 | 10 | com12 30 | 
. . . . . . 7
 | 
| 12 | 11 | 3adant2 1018 | 
. . . . . 6
 | 
| 13 | 12 | imp 124 | 
. . . . 5
 | 
| 14 | ltadd1 8456 | 
. . . . . . . . 9
 | |
| 15 | 14 | 3expib 1208 | 
. . . . . . . 8
 | 
| 16 | 15 | com12 30 | 
. . . . . . 7
 | 
| 17 | 16 | 3adant1 1017 | 
. . . . . 6
 | 
| 18 | 17 | imp 124 | 
. . . . 5
 | 
| 19 | 13, 18 | anbi12d 473 | 
. . . 4
 | 
| 20 | 19 | pm5.32da 452 | 
. . 3
 | 
| 21 | readdcl 8005 | 
. . . . . . . 8
 | |
| 22 | 21 | expcom 116 | 
. . . . . . 7
 | 
| 23 | 22 | anim1d 336 | 
. . . . . 6
 | 
| 24 | 3anass 984 | 
. . . . . 6
 | |
| 25 | 23, 24 | imbitrrdi 162 | 
. . . . 5
 | 
| 26 | 25 | 3ad2ant3 1022 | 
. . . 4
 | 
| 27 | readdcl 8005 | 
. . . . . 6
 | |
| 28 | 27 | 3adant2 1018 | 
. . . . 5
 | 
| 29 | readdcl 8005 | 
. . . . . 6
 | |
| 30 | 29 | 3adant1 1017 | 
. . . . 5
 | 
| 31 | rexr 8072 | 
. . . . . . 7
 | |
| 32 | elico2 10012 | 
. . . . . . 7
 | |
| 33 | 31, 32 | sylan2 286 | 
. . . . . 6
 | 
| 34 | 33 | biimprd 158 | 
. . . . 5
 | 
| 35 | 28, 30, 34 | syl2anc 411 | 
. . . 4
 | 
| 36 | 26, 35 | syld 45 | 
. . 3
 | 
| 37 | 20, 36 | sylbid 150 | 
. 2
 | 
| 38 | 7, 37 | syld 45 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-ico 9969 | 
| This theorem is referenced by: icoshftf1o 10066 | 
| Copyright terms: Public domain | W3C validator |