| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > icoshft | Unicode version | ||
| Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.) |
| Ref | Expression |
|---|---|
| icoshft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8188 |
. . . . . 6
| |
| 2 | elico2 10129 |
. . . . . 6
| |
| 3 | 1, 2 | sylan2 286 |
. . . . 5
|
| 4 | 3 | biimpd 144 |
. . . 4
|
| 5 | 4 | 3adant3 1041 |
. . 3
|
| 6 | 3anass 1006 |
. . 3
| |
| 7 | 5, 6 | imbitrdi 161 |
. 2
|
| 8 | leadd1 8573 |
. . . . . . . . . 10
| |
| 9 | 8 | 3com12 1231 |
. . . . . . . . 9
|
| 10 | 9 | 3expib 1230 |
. . . . . . . 8
|
| 11 | 10 | com12 30 |
. . . . . . 7
|
| 12 | 11 | 3adant2 1040 |
. . . . . 6
|
| 13 | 12 | imp 124 |
. . . . 5
|
| 14 | ltadd1 8572 |
. . . . . . . . 9
| |
| 15 | 14 | 3expib 1230 |
. . . . . . . 8
|
| 16 | 15 | com12 30 |
. . . . . . 7
|
| 17 | 16 | 3adant1 1039 |
. . . . . 6
|
| 18 | 17 | imp 124 |
. . . . 5
|
| 19 | 13, 18 | anbi12d 473 |
. . . 4
|
| 20 | 19 | pm5.32da 452 |
. . 3
|
| 21 | readdcl 8121 |
. . . . . . . 8
| |
| 22 | 21 | expcom 116 |
. . . . . . 7
|
| 23 | 22 | anim1d 336 |
. . . . . 6
|
| 24 | 3anass 1006 |
. . . . . 6
| |
| 25 | 23, 24 | imbitrrdi 162 |
. . . . 5
|
| 26 | 25 | 3ad2ant3 1044 |
. . . 4
|
| 27 | readdcl 8121 |
. . . . . 6
| |
| 28 | 27 | 3adant2 1040 |
. . . . 5
|
| 29 | readdcl 8121 |
. . . . . 6
| |
| 30 | 29 | 3adant1 1039 |
. . . . 5
|
| 31 | rexr 8188 |
. . . . . . 7
| |
| 32 | elico2 10129 |
. . . . . . 7
| |
| 33 | 31, 32 | sylan2 286 |
. . . . . 6
|
| 34 | 33 | biimprd 158 |
. . . . 5
|
| 35 | 28, 30, 34 | syl2anc 411 |
. . . 4
|
| 36 | 26, 35 | syld 45 |
. . 3
|
| 37 | 20, 36 | sylbid 150 |
. 2
|
| 38 | 7, 37 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-ico 10086 |
| This theorem is referenced by: icoshftf1o 10183 |
| Copyright terms: Public domain | W3C validator |