ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcd Unicode version

Theorem mulgcd 11693
Description: Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
mulgcd  |-  ( ( K  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )

Proof of Theorem mulgcd
StepHypRef Expression
1 elnn0 8972 . . 3  |-  ( K  e.  NN0  <->  ( K  e.  NN  \/  K  =  0 ) )
2 simp1 981 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  NN )
32nnzd 9165 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
4 simp2 982 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
53, 4zmulcld 9172 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
6 simp3 983 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
73, 6zmulcld 9172 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N )  e.  ZZ )
85, 7gcdcld 11646 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e. 
NN0 )
92nnnn0d 9023 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  NN0 )
10 gcdcl 11644 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
11103adant1 999 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e. 
NN0 )
129, 11nn0mulcld 9028 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  e. 
NN0 )
138nn0cnd 9025 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  CC )
142nncnd 8727 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  CC )
152nnap0d 8759 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K #  0 )
1613, 14, 15divcanap2d 8545 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
17 gcddvds 11641 . . . . . . . . . . . . 13  |-  ( ( ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  ||  ( K  x.  M
)  /\  ( ( K  x.  M )  gcd  ( K  x.  N
) )  ||  ( K  x.  N )
) )
185, 7, 17syl2anc 408 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  ||  ( K  x.  M )  /\  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  N
) ) )
1918simpld 111 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  M
) )
2016, 19eqbrtrd 3945 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  M
) )
21 dvdsmul1 11504 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  K  ||  ( K  x.  M ) )
223, 4, 21syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  M
) )
23 dvdsmul1 11504 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  N ) )
243, 6, 23syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  N
) )
25 dvdsgcd 11689 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( K 
||  ( K  x.  M )  /\  K  ||  ( K  x.  N
) )  ->  K  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) ) )
263, 5, 7, 25syl3anc 1216 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( K  x.  M )  /\  K  ||  ( K  x.  N ) )  ->  K  ||  (
( K  x.  M
)  gcd  ( K  x.  N ) ) ) )
2722, 24, 26mp2and 429 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
282nnne0d 8758 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  =/=  0 )
298nn0zd 9164 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  ZZ )
30 dvdsval2 11485 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  K  =/=  0  /\  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  ZZ )  ->  ( K  ||  ( ( K  x.  M )  gcd  ( K  x.  N
) )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  e.  ZZ ) )
313, 28, 29, 30syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  ( ( K  x.  M )  gcd  ( K  x.  N
) )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  e.  ZZ ) )
3227, 31mpbid 146 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K )  e.  ZZ )
33 dvdscmulr 11511 . . . . . . . . . . 11  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  M  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
) )  ||  ( K  x.  M )  <->  ( ( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  M ) )
3432, 4, 3, 28, 33syl112anc 1220 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) )  ||  ( K  x.  M )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  ||  M
) )
3520, 34mpbid 146 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  M )
3618simprd 113 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  N
) )
3716, 36eqbrtrd 3945 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  N
) )
38 dvdscmulr 11511 . . . . . . . . . . 11  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
) )  ||  ( K  x.  N )  <->  ( ( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  N ) )
3932, 6, 3, 28, 38syl112anc 1220 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) )  ||  ( K  x.  N )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  ||  N
) )
4037, 39mpbid 146 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  N )
41 dvdsgcd 11689 . . . . . . . . . 10  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  /  K )  ||  M  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  N )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N ) ) )
4232, 4, 6, 41syl3anc 1216 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  /  K )  ||  M  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  N )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N ) ) )
4335, 40, 42mp2and 429 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  ( M  gcd  N ) )
4411nn0zd 9164 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  ZZ )
45 dvdscmul 11509 . . . . . . . . 9  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  ( M  gcd  N )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) ) )
4632, 44, 3, 45syl3anc 1216 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) ) )
4743, 46mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) )
4816, 47eqbrtrrd 3947 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  ( M  gcd  N ) ) )
49 gcddvds 11641 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
50493adant1 999 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  N ) )
5150simpld 111 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  M )
52 dvdscmul 11509 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  M ) ) )
5344, 4, 3, 52syl3anc 1216 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  M ) ) )
5451, 53mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M
) )
5550simprd 113 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  N )
56 dvdscmul 11509 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) ) )
5744, 6, 3, 56syl3anc 1216 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) ) )
5855, 57mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  N
) )
5912nn0zd 9164 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  e.  ZZ )
60 dvdsgcd 11689 . . . . . . . 8  |-  ( ( ( K  x.  ( M  gcd  N ) )  e.  ZZ  /\  ( K  x.  M )  e.  ZZ  /\  ( K  x.  N )  e.  ZZ )  ->  (
( ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) )  -> 
( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )
6159, 5, 7, 60syl3anc 1216 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) )  -> 
( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )
6254, 58, 61mp2and 429 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
63 dvdseq 11535 . . . . . 6  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  e.  NN0  /\  ( K  x.  ( M  gcd  N ) )  e.  NN0 )  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  ||  ( K  x.  ( M  gcd  N ) )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) )
648, 12, 48, 62, 63syl22anc 1217 . . . . 5  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )
65643expib 1184 . . . 4  |-  ( K  e.  NN  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) ) )
66103adant1 999 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
6766nn0cnd 9025 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
6867mul02d 8147 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  ( M  gcd  N ) )  =  0 )
69 gcd0val 11638 . . . . . . 7  |-  ( 0  gcd  0 )  =  0
7068, 69syl6reqr 2189 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  0
)  =  ( 0  x.  ( M  gcd  N ) ) )
71 simp1 981 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  =  0 )
7271oveq1d 5782 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M
)  =  ( 0  x.  M ) )
73 zcn 9052 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
74733ad2ant2 1003 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
7574mul02d 8147 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  M
)  =  0 )
7672, 75eqtrd 2170 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M
)  =  0 )
7771oveq1d 5782 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  =  ( 0  x.  N ) )
78 zcn 9052 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
79783ad2ant3 1004 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
8079mul02d 8147 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  N
)  =  0 )
8177, 80eqtrd 2170 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  =  0 )
8276, 81oveq12d 5785 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( 0  gcd  0 ) )
8371oveq1d 5782 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
8470, 82, 833eqtr4d 2180 . . . . 5  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( K  x.  ( M  gcd  N ) ) )
85843expib 1184 . . . 4  |-  ( K  =  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) ) )
8665, 85jaoi 705 . . 3  |-  ( ( K  e.  NN  \/  K  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) ) )
871, 86sylbi 120 . 2  |-  ( K  e.  NN0  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( K  x.  ( M  gcd  N ) ) ) )
88873impib 1179 1  |-  ( ( K  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2306   class class class wbr 3924  (class class class)co 5767   CCcc 7611   0cc0 7613    x. cmul 7618    / cdiv 8425   NNcn 8713   NN0cn0 8970   ZZcz 9047    || cdvds 11482    gcd cgcd 11624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625
This theorem is referenced by:  absmulgcd  11694  mulgcdr  11695  mulgcddvds  11764  qredeu  11767
  Copyright terms: Public domain W3C validator