ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcd Unicode version

Theorem mulgcd 12337
Description: Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
mulgcd  |-  ( ( K  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )

Proof of Theorem mulgcd
StepHypRef Expression
1 elnn0 9297 . . 3  |-  ( K  e.  NN0  <->  ( K  e.  NN  \/  K  =  0 ) )
2 simp1 1000 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  NN )
32nnzd 9494 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
4 simp2 1001 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
53, 4zmulcld 9501 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
6 simp3 1002 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
73, 6zmulcld 9501 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N )  e.  ZZ )
85, 7gcdcld 12289 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e. 
NN0 )
92nnnn0d 9348 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  NN0 )
10 gcdcl 12287 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
11103adant1 1018 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e. 
NN0 )
129, 11nn0mulcld 9353 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  e. 
NN0 )
138nn0cnd 9350 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  CC )
142nncnd 9050 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  CC )
152nnap0d 9082 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K #  0 )
1613, 14, 15divcanap2d 8865 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
17 gcddvds 12284 . . . . . . . . . . . . 13  |-  ( ( ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  ||  ( K  x.  M
)  /\  ( ( K  x.  M )  gcd  ( K  x.  N
) )  ||  ( K  x.  N )
) )
185, 7, 17syl2anc 411 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  ||  ( K  x.  M )  /\  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  N
) ) )
1918simpld 112 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  M
) )
2016, 19eqbrtrd 4066 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  M
) )
21 dvdsmul1 12124 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  K  ||  ( K  x.  M ) )
223, 4, 21syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  M
) )
23 dvdsmul1 12124 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  N ) )
243, 6, 23syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  N
) )
25 dvdsgcd 12333 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( K 
||  ( K  x.  M )  /\  K  ||  ( K  x.  N
) )  ->  K  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) ) )
263, 5, 7, 25syl3anc 1250 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( K  x.  M )  /\  K  ||  ( K  x.  N ) )  ->  K  ||  (
( K  x.  M
)  gcd  ( K  x.  N ) ) ) )
2722, 24, 26mp2and 433 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
282nnne0d 9081 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  =/=  0 )
298nn0zd 9493 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  ZZ )
30 dvdsval2 12101 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  K  =/=  0  /\  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  ZZ )  ->  ( K  ||  ( ( K  x.  M )  gcd  ( K  x.  N
) )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  e.  ZZ ) )
313, 28, 29, 30syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  ( ( K  x.  M )  gcd  ( K  x.  N
) )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  e.  ZZ ) )
3227, 31mpbid 147 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K )  e.  ZZ )
33 dvdscmulr 12131 . . . . . . . . . . 11  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  M  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
) )  ||  ( K  x.  M )  <->  ( ( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  M ) )
3432, 4, 3, 28, 33syl112anc 1254 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) )  ||  ( K  x.  M )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  ||  M
) )
3520, 34mpbid 147 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  M )
3618simprd 114 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  N
) )
3716, 36eqbrtrd 4066 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  N
) )
38 dvdscmulr 12131 . . . . . . . . . . 11  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
) )  ||  ( K  x.  N )  <->  ( ( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  N ) )
3932, 6, 3, 28, 38syl112anc 1254 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) )  ||  ( K  x.  N )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  ||  N
) )
4037, 39mpbid 147 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  N )
41 dvdsgcd 12333 . . . . . . . . . 10  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  /  K )  ||  M  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  N )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N ) ) )
4232, 4, 6, 41syl3anc 1250 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  /  K )  ||  M  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  N )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N ) ) )
4335, 40, 42mp2and 433 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  ( M  gcd  N ) )
4411nn0zd 9493 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  ZZ )
45 dvdscmul 12129 . . . . . . . . 9  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  ( M  gcd  N )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) ) )
4632, 44, 3, 45syl3anc 1250 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) ) )
4743, 46mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) )
4816, 47eqbrtrrd 4068 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  ( M  gcd  N ) ) )
49 gcddvds 12284 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
50493adant1 1018 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  N ) )
5150simpld 112 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  M )
52 dvdscmul 12129 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  M ) ) )
5344, 4, 3, 52syl3anc 1250 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  M ) ) )
5451, 53mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M
) )
5550simprd 114 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  N )
56 dvdscmul 12129 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) ) )
5744, 6, 3, 56syl3anc 1250 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) ) )
5855, 57mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  N
) )
5912nn0zd 9493 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  e.  ZZ )
60 dvdsgcd 12333 . . . . . . . 8  |-  ( ( ( K  x.  ( M  gcd  N ) )  e.  ZZ  /\  ( K  x.  M )  e.  ZZ  /\  ( K  x.  N )  e.  ZZ )  ->  (
( ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) )  -> 
( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )
6159, 5, 7, 60syl3anc 1250 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) )  -> 
( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )
6254, 58, 61mp2and 433 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
63 dvdseq 12159 . . . . . 6  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  e.  NN0  /\  ( K  x.  ( M  gcd  N ) )  e.  NN0 )  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  ||  ( K  x.  ( M  gcd  N ) )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) )
648, 12, 48, 62, 63syl22anc 1251 . . . . 5  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )
65643expib 1209 . . . 4  |-  ( K  e.  NN  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) ) )
66 gcd0val 12281 . . . . . . 7  |-  ( 0  gcd  0 )  =  0
67103adant1 1018 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
6867nn0cnd 9350 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
6968mul02d 8464 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  ( M  gcd  N ) )  =  0 )
7066, 69eqtr4id 2257 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  0
)  =  ( 0  x.  ( M  gcd  N ) ) )
71 simp1 1000 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  =  0 )
7271oveq1d 5959 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M
)  =  ( 0  x.  M ) )
73 zcn 9377 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
74733ad2ant2 1022 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
7574mul02d 8464 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  M
)  =  0 )
7672, 75eqtrd 2238 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M
)  =  0 )
7771oveq1d 5959 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  =  ( 0  x.  N ) )
78 zcn 9377 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
79783ad2ant3 1023 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
8079mul02d 8464 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  N
)  =  0 )
8177, 80eqtrd 2238 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  =  0 )
8276, 81oveq12d 5962 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( 0  gcd  0 ) )
8371oveq1d 5959 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
8470, 82, 833eqtr4d 2248 . . . . 5  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( K  x.  ( M  gcd  N ) ) )
85843expib 1209 . . . 4  |-  ( K  =  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) ) )
8665, 85jaoi 718 . . 3  |-  ( ( K  e.  NN  \/  K  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) ) )
871, 86sylbi 121 . 2  |-  ( K  e.  NN0  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( K  x.  ( M  gcd  N ) ) ) )
88873impib 1204 1  |-  ( ( K  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044  (class class class)co 5944   CCcc 7923   0cc0 7925    x. cmul 7930    / cdiv 8745   NNcn 9036   NN0cn0 9295   ZZcz 9372    || cdvds 12098    gcd cgcd 12274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275
This theorem is referenced by:  absmulgcd  12338  mulgcdr  12339  mulgcddvds  12416  qredeu  12419  coprimeprodsq  12580  pythagtriplem4  12591  2sqlem8  15600
  Copyright terms: Public domain W3C validator