ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcd Unicode version

Theorem mulgcd 11715
Description: Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
mulgcd  |-  ( ( K  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )

Proof of Theorem mulgcd
StepHypRef Expression
1 elnn0 8991 . . 3  |-  ( K  e.  NN0  <->  ( K  e.  NN  \/  K  =  0 ) )
2 simp1 981 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  NN )
32nnzd 9184 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
4 simp2 982 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
53, 4zmulcld 9191 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
6 simp3 983 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
73, 6zmulcld 9191 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N )  e.  ZZ )
85, 7gcdcld 11668 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e. 
NN0 )
92nnnn0d 9042 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  NN0 )
10 gcdcl 11666 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
11103adant1 999 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e. 
NN0 )
129, 11nn0mulcld 9047 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  e. 
NN0 )
138nn0cnd 9044 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  CC )
142nncnd 8746 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  CC )
152nnap0d 8778 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K #  0 )
1613, 14, 15divcanap2d 8564 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
17 gcddvds 11663 . . . . . . . . . . . . 13  |-  ( ( ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  ||  ( K  x.  M
)  /\  ( ( K  x.  M )  gcd  ( K  x.  N
) )  ||  ( K  x.  N )
) )
185, 7, 17syl2anc 408 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  ||  ( K  x.  M )  /\  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  N
) ) )
1918simpld 111 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  M
) )
2016, 19eqbrtrd 3950 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  M
) )
21 dvdsmul1 11526 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  K  ||  ( K  x.  M ) )
223, 4, 21syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  M
) )
23 dvdsmul1 11526 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  N ) )
243, 6, 23syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( K  x.  N
) )
25 dvdsgcd 11711 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( K 
||  ( K  x.  M )  /\  K  ||  ( K  x.  N
) )  ->  K  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) ) )
263, 5, 7, 25syl3anc 1216 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( K  x.  M )  /\  K  ||  ( K  x.  N ) )  ->  K  ||  (
( K  x.  M
)  gcd  ( K  x.  N ) ) ) )
2722, 24, 26mp2and 429 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
282nnne0d 8777 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  =/=  0 )
298nn0zd 9183 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  ZZ )
30 dvdsval2 11507 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  K  =/=  0  /\  (
( K  x.  M
)  gcd  ( K  x.  N ) )  e.  ZZ )  ->  ( K  ||  ( ( K  x.  M )  gcd  ( K  x.  N
) )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  e.  ZZ ) )
313, 28, 29, 30syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  ( ( K  x.  M )  gcd  ( K  x.  N
) )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  e.  ZZ ) )
3227, 31mpbid 146 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K )  e.  ZZ )
33 dvdscmulr 11533 . . . . . . . . . . 11  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  M  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
) )  ||  ( K  x.  M )  <->  ( ( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  M ) )
3432, 4, 3, 28, 33syl112anc 1220 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) )  ||  ( K  x.  M )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  ||  M
) )
3520, 34mpbid 146 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  M )
3618simprd 113 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  N
) )
3716, 36eqbrtrd 3950 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  N
) )
38 dvdscmulr 11533 . . . . . . . . . . 11  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
) )  ||  ( K  x.  N )  <->  ( ( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  N ) )
3932, 6, 3, 28, 38syl112anc 1220 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) )  ||  ( K  x.  N )  <->  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K )  ||  N
) )
4037, 39mpbid 146 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  N )
41 dvdsgcd 11711 . . . . . . . . . 10  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  /  K )  ||  M  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  N )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N ) ) )
4232, 4, 6, 41syl3anc 1216 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( ( K  x.  M )  gcd  ( K  x.  N ) )  /  K )  ||  M  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  N )  ->  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N ) ) )
4335, 40, 42mp2and 429 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  M )  gcd  ( K  x.  N )
)  /  K ) 
||  ( M  gcd  N ) )
4411nn0zd 9183 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  ZZ )
45 dvdscmul 11531 . . . . . . . . 9  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  e.  ZZ  /\  ( M  gcd  N )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) ) )
4632, 44, 3, 45syl3anc 1216 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( K  x.  M )  gcd  ( K  x.  N
) )  /  K
)  ||  ( M  gcd  N )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) ) )
4743, 46mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( (
( K  x.  M
)  gcd  ( K  x.  N ) )  /  K ) )  ||  ( K  x.  ( M  gcd  N ) ) )
4816, 47eqbrtrrd 3952 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  ||  ( K  x.  ( M  gcd  N ) ) )
49 gcddvds 11663 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
50493adant1 999 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  N ) )
5150simpld 111 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  M )
52 dvdscmul 11531 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  M ) ) )
5344, 4, 3, 52syl3anc 1216 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  M ) ) )
5451, 53mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M
) )
5550simprd 113 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  N )
56 dvdscmul 11531 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) ) )
5744, 6, 3, 56syl3anc 1216 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  ->  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) ) )
5855, 57mpd 13 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  N
) )
5912nn0zd 9183 . . . . . . . 8  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  e.  ZZ )
60 dvdsgcd 11711 . . . . . . . 8  |-  ( ( ( K  x.  ( M  gcd  N ) )  e.  ZZ  /\  ( K  x.  M )  e.  ZZ  /\  ( K  x.  N )  e.  ZZ )  ->  (
( ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) )  -> 
( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )
6159, 5, 7, 60syl3anc 1216 . . . . . . 7  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  x.  ( M  gcd  N ) )  ||  ( K  x.  M )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( K  x.  N ) )  -> 
( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )
6254, 58, 61mp2and 429 . . . . . 6  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  ||  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
63 dvdseq 11557 . . . . . 6  |-  ( ( ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  e.  NN0  /\  ( K  x.  ( M  gcd  N ) )  e.  NN0 )  /\  ( ( ( K  x.  M )  gcd  ( K  x.  N
) )  ||  ( K  x.  ( M  gcd  N ) )  /\  ( K  x.  ( M  gcd  N ) ) 
||  ( ( K  x.  M )  gcd  ( K  x.  N
) ) ) )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) )
648, 12, 48, 62, 63syl22anc 1217 . . . . 5  |-  ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )
65643expib 1184 . . . 4  |-  ( K  e.  NN  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) ) )
66103adant1 999 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
6766nn0cnd 9044 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
6867mul02d 8166 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  ( M  gcd  N ) )  =  0 )
69 gcd0val 11660 . . . . . . 7  |-  ( 0  gcd  0 )  =  0
7068, 69syl6reqr 2191 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  0
)  =  ( 0  x.  ( M  gcd  N ) ) )
71 simp1 981 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  =  0 )
7271oveq1d 5789 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M
)  =  ( 0  x.  M ) )
73 zcn 9071 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
74733ad2ant2 1003 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
7574mul02d 8166 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  M
)  =  0 )
7672, 75eqtrd 2172 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M
)  =  0 )
7771oveq1d 5789 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  =  ( 0  x.  N ) )
78 zcn 9071 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
79783ad2ant3 1004 . . . . . . . . 9  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
8079mul02d 8166 . . . . . . . 8  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  x.  N
)  =  0 )
8177, 80eqtrd 2172 . . . . . . 7  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  =  0 )
8276, 81oveq12d 5792 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( 0  gcd  0 ) )
8371oveq1d 5789 . . . . . 6  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  ( M  gcd  N ) )  =  ( 0  x.  ( M  gcd  N
) ) )
8470, 82, 833eqtr4d 2182 . . . . 5  |-  ( ( K  =  0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( K  x.  ( M  gcd  N ) ) )
85843expib 1184 . . . 4  |-  ( K  =  0  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N
) )  =  ( K  x.  ( M  gcd  N ) ) ) )
8665, 85jaoi 705 . . 3  |-  ( ( K  e.  NN  \/  K  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) ) )
871, 86sylbi 120 . 2  |-  ( K  e.  NN0  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N )
)  =  ( K  x.  ( M  gcd  N ) ) ) )
88873impib 1179 1  |-  ( ( K  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2308   class class class wbr 3929  (class class class)co 5774   CCcc 7630   0cc0 7632    x. cmul 7637    / cdiv 8444   NNcn 8732   NN0cn0 8989   ZZcz 9066    || cdvds 11504    gcd cgcd 11646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-fz 9803  df-fzo 9932  df-fl 10055  df-mod 10108  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-dvds 11505  df-gcd 11647
This theorem is referenced by:  absmulgcd  11716  mulgcdr  11717  mulgcddvds  11786  qredeu  11789
  Copyright terms: Public domain W3C validator