Proof of Theorem mulgcd
Step | Hyp | Ref
| Expression |
1 | | elnn0 9137 |
. . 3
|
2 | | simp1 992 |
. . . . . . . . 9
|
3 | 2 | nnzd 9333 |
. . . . . . . 8
|
4 | | simp2 993 |
. . . . . . . 8
|
5 | 3, 4 | zmulcld 9340 |
. . . . . . 7
|
6 | | simp3 994 |
. . . . . . . 8
|
7 | 3, 6 | zmulcld 9340 |
. . . . . . 7
|
8 | 5, 7 | gcdcld 11923 |
. . . . . 6
|
9 | 2 | nnnn0d 9188 |
. . . . . . 7
|
10 | | gcdcl 11921 |
. . . . . . . 8
|
11 | 10 | 3adant1 1010 |
. . . . . . 7
|
12 | 9, 11 | nn0mulcld 9193 |
. . . . . 6
|
13 | 8 | nn0cnd 9190 |
. . . . . . . 8
|
14 | 2 | nncnd 8892 |
. . . . . . . 8
|
15 | 2 | nnap0d 8924 |
. . . . . . . 8
# |
16 | 13, 14, 15 | divcanap2d 8709 |
. . . . . . 7
|
17 | | gcddvds 11918 |
. . . . . . . . . . . . 13
|
18 | 5, 7, 17 | syl2anc 409 |
. . . . . . . . . . . 12
|
19 | 18 | simpld 111 |
. . . . . . . . . . 11
|
20 | 16, 19 | eqbrtrd 4011 |
. . . . . . . . . 10
|
21 | | dvdsmul1 11775 |
. . . . . . . . . . . . . 14
|
22 | 3, 4, 21 | syl2anc 409 |
. . . . . . . . . . . . 13
|
23 | | dvdsmul1 11775 |
. . . . . . . . . . . . . 14
|
24 | 3, 6, 23 | syl2anc 409 |
. . . . . . . . . . . . 13
|
25 | | dvdsgcd 11967 |
. . . . . . . . . . . . . 14
|
26 | 3, 5, 7, 25 | syl3anc 1233 |
. . . . . . . . . . . . 13
|
27 | 22, 24, 26 | mp2and 431 |
. . . . . . . . . . . 12
|
28 | 2 | nnne0d 8923 |
. . . . . . . . . . . . 13
|
29 | 8 | nn0zd 9332 |
. . . . . . . . . . . . 13
|
30 | | dvdsval2 11752 |
. . . . . . . . . . . . 13
|
31 | 3, 28, 29, 30 | syl3anc 1233 |
. . . . . . . . . . . 12
|
32 | 27, 31 | mpbid 146 |
. . . . . . . . . . 11
|
33 | | dvdscmulr 11782 |
. . . . . . . . . . 11
|
34 | 32, 4, 3, 28, 33 | syl112anc 1237 |
. . . . . . . . . 10
|
35 | 20, 34 | mpbid 146 |
. . . . . . . . 9
|
36 | 18 | simprd 113 |
. . . . . . . . . . 11
|
37 | 16, 36 | eqbrtrd 4011 |
. . . . . . . . . 10
|
38 | | dvdscmulr 11782 |
. . . . . . . . . . 11
|
39 | 32, 6, 3, 28, 38 | syl112anc 1237 |
. . . . . . . . . 10
|
40 | 37, 39 | mpbid 146 |
. . . . . . . . 9
|
41 | | dvdsgcd 11967 |
. . . . . . . . . 10
|
42 | 32, 4, 6, 41 | syl3anc 1233 |
. . . . . . . . 9
|
43 | 35, 40, 42 | mp2and 431 |
. . . . . . . 8
|
44 | 11 | nn0zd 9332 |
. . . . . . . . 9
|
45 | | dvdscmul 11780 |
. . . . . . . . 9
|
46 | 32, 44, 3, 45 | syl3anc 1233 |
. . . . . . . 8
|
47 | 43, 46 | mpd 13 |
. . . . . . 7
|
48 | 16, 47 | eqbrtrrd 4013 |
. . . . . 6
|
49 | | gcddvds 11918 |
. . . . . . . . . 10
|
50 | 49 | 3adant1 1010 |
. . . . . . . . 9
|
51 | 50 | simpld 111 |
. . . . . . . 8
|
52 | | dvdscmul 11780 |
. . . . . . . . 9
|
53 | 44, 4, 3, 52 | syl3anc 1233 |
. . . . . . . 8
|
54 | 51, 53 | mpd 13 |
. . . . . . 7
|
55 | 50 | simprd 113 |
. . . . . . . 8
|
56 | | dvdscmul 11780 |
. . . . . . . . 9
|
57 | 44, 6, 3, 56 | syl3anc 1233 |
. . . . . . . 8
|
58 | 55, 57 | mpd 13 |
. . . . . . 7
|
59 | 12 | nn0zd 9332 |
. . . . . . . 8
|
60 | | dvdsgcd 11967 |
. . . . . . . 8
|
61 | 59, 5, 7, 60 | syl3anc 1233 |
. . . . . . 7
|
62 | 54, 58, 61 | mp2and 431 |
. . . . . 6
|
63 | | dvdseq 11808 |
. . . . . 6
|
64 | 8, 12, 48, 62, 63 | syl22anc 1234 |
. . . . 5
|
65 | 64 | 3expib 1201 |
. . . 4
|
66 | | gcd0val 11915 |
. . . . . . 7
|
67 | 10 | 3adant1 1010 |
. . . . . . . . 9
|
68 | 67 | nn0cnd 9190 |
. . . . . . . 8
|
69 | 68 | mul02d 8311 |
. . . . . . 7
|
70 | 66, 69 | eqtr4id 2222 |
. . . . . 6
|
71 | | simp1 992 |
. . . . . . . . 9
|
72 | 71 | oveq1d 5868 |
. . . . . . . 8
|
73 | | zcn 9217 |
. . . . . . . . . 10
|
74 | 73 | 3ad2ant2 1014 |
. . . . . . . . 9
|
75 | 74 | mul02d 8311 |
. . . . . . . 8
|
76 | 72, 75 | eqtrd 2203 |
. . . . . . 7
|
77 | 71 | oveq1d 5868 |
. . . . . . . 8
|
78 | | zcn 9217 |
. . . . . . . . . 10
|
79 | 78 | 3ad2ant3 1015 |
. . . . . . . . 9
|
80 | 79 | mul02d 8311 |
. . . . . . . 8
|
81 | 77, 80 | eqtrd 2203 |
. . . . . . 7
|
82 | 76, 81 | oveq12d 5871 |
. . . . . 6
|
83 | 71 | oveq1d 5868 |
. . . . . 6
|
84 | 70, 82, 83 | 3eqtr4d 2213 |
. . . . 5
|
85 | 84 | 3expib 1201 |
. . . 4
|
86 | 65, 85 | jaoi 711 |
. . 3
|
87 | 1, 86 | sylbi 120 |
. 2
|
88 | 87 | 3impib 1196 |
1
|