ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blval Unicode version

Theorem blval 14936
Description: The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
blval  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
Distinct variable groups:    x, P    x, D    x, R    x, X

Proof of Theorem blval
Dummy variables  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 14933 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
213ad2ant1 1021 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( ball `  D
)  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
3 simprl 529 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
y  =  P )
43oveq1d 5972 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
( y D x )  =  ( P D x ) )
5 simprr 531 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
r  =  R )
64, 5breq12d 4064 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
( ( y D x )  <  r  <->  ( P D x )  <  R ) )
76rabbidv 2762 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  ->  { x  e.  X  |  ( y D x )  <  r }  =  { x  e.  X  |  ( P D x )  < 
R } )
8 simp2 1001 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  P  e.  X )
9 simp3 1002 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  R  e.  RR* )
10 xmetrel 14890 . . . . 5  |-  Rel  *Met
11 relelfvdm 5621 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
1210, 11mpan 424 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
13123ad2ant1 1021 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  X  e.  dom  *Met )
14 rabexg 4195 . . 3  |-  ( X  e.  dom  *Met  ->  { x  e.  X  |  ( P D x )  <  R }  e.  _V )
1513, 14syl 14 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  { x  e.  X  |  ( P D x )  <  R }  e.  _V )
162, 7, 8, 9, 15ovmpod 6086 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   {crab 2489   _Vcvv 2773   class class class wbr 4051   dom cdm 4683   Rel wrel 4688   ` cfv 5280  (class class class)co 5957    e. cmpo 5959   RR*cxr 8126    < clt 8127   *Metcxmet 14373   ballcbl 14375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-map 6750  df-pnf 8129  df-mnf 8130  df-xr 8131  df-psmet 14380  df-xmet 14381  df-bl 14383
This theorem is referenced by:  elbl  14938  metss2lem  15044  bdbl  15050  xmetxpbl  15055
  Copyright terms: Public domain W3C validator