ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blval Unicode version

Theorem blval 13029
Description: The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
blval  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
Distinct variable groups:    x, P    x, D    x, R    x, X

Proof of Theorem blval
Dummy variables  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 13026 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
213ad2ant1 1008 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( ball `  D
)  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
3 simprl 521 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
y  =  P )
43oveq1d 5857 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
( y D x )  =  ( P D x ) )
5 simprr 522 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
r  =  R )
64, 5breq12d 3995 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
( ( y D x )  <  r  <->  ( P D x )  <  R ) )
76rabbidv 2715 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  ->  { x  e.  X  |  ( y D x )  <  r }  =  { x  e.  X  |  ( P D x )  < 
R } )
8 simp2 988 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  P  e.  X )
9 simp3 989 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  R  e.  RR* )
10 xmetrel 12983 . . . . 5  |-  Rel  *Met
11 relelfvdm 5518 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
1210, 11mpan 421 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
13123ad2ant1 1008 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  X  e.  dom  *Met )
14 rabexg 4125 . . 3  |-  ( X  e.  dom  *Met  ->  { x  e.  X  |  ( P D x )  <  R }  e.  _V )
1513, 14syl 14 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  { x  e.  X  |  ( P D x )  <  R }  e.  _V )
162, 7, 8, 9, 15ovmpod 5969 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   {crab 2448   _Vcvv 2726   class class class wbr 3982   dom cdm 4604   Rel wrel 4609   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   RR*cxr 7932    < clt 7933   *Metcxmet 12620   ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-psmet 12627  df-xmet 12628  df-bl 12630
This theorem is referenced by:  elbl  13031  metss2lem  13137  bdbl  13143  xmetxpbl  13148
  Copyright terms: Public domain W3C validator