ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blval Unicode version

Theorem blval 14803
Description: The ball around a point  P is the set of all points whose distance from  P is less than the ball's radius  R. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
blval  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
Distinct variable groups:    x, P    x, D    x, R    x, X

Proof of Theorem blval
Dummy variables  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 14800 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
213ad2ant1 1020 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( ball `  D
)  =  ( y  e.  X ,  r  e.  RR*  |->  { x  e.  X  |  (
y D x )  <  r } ) )
3 simprl 529 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
y  =  P )
43oveq1d 5958 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
( y D x )  =  ( P D x ) )
5 simprr 531 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
r  =  R )
64, 5breq12d 4056 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  -> 
( ( y D x )  <  r  <->  ( P D x )  <  R ) )
76rabbidv 2760 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  ( y  =  P  /\  r  =  R ) )  ->  { x  e.  X  |  ( y D x )  <  r }  =  { x  e.  X  |  ( P D x )  < 
R } )
8 simp2 1000 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  P  e.  X )
9 simp3 1001 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  R  e.  RR* )
10 xmetrel 14757 . . . . 5  |-  Rel  *Met
11 relelfvdm 5607 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
1210, 11mpan 424 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
13123ad2ant1 1020 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  X  e.  dom  *Met )
14 rabexg 4186 . . 3  |-  ( X  e.  dom  *Met  ->  { x  e.  X  |  ( P D x )  <  R }  e.  _V )
1513, 14syl 14 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  { x  e.  X  |  ( P D x )  <  R }  e.  _V )
162, 7, 8, 9, 15ovmpod 6072 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   {crab 2487   _Vcvv 2771   class class class wbr 4043   dom cdm 4674   Rel wrel 4679   ` cfv 5270  (class class class)co 5943    e. cmpo 5945   RR*cxr 8105    < clt 8106   *Metcxmet 14240   ballcbl 14242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-map 6736  df-pnf 8108  df-mnf 8109  df-xr 8110  df-psmet 14247  df-xmet 14248  df-bl 14250
This theorem is referenced by:  elbl  14805  metss2lem  14911  bdbl  14917  xmetxpbl  14922
  Copyright terms: Public domain W3C validator