ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1lem GIF version

Theorem climcn1lem 11120
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climcn1lem.1 𝑍 = (ℤ𝑀)
climcn1lem.2 (𝜑𝐹𝐴)
climcn1lem.4 (𝜑𝐺𝑊)
climcn1lem.5 (𝜑𝑀 ∈ ℤ)
climcn1lem.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climcn1lem.7 𝐻:ℂ⟶ℂ
climcn1lem.8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
climcn1lem.9 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))
Assertion
Ref Expression
climcn1lem (𝜑𝐺 ⇝ (𝐻𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝑘,𝐹,𝑦,𝑧   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦   𝑘,𝐻,𝑥,𝑦,𝑧   𝑘,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1lem
StepHypRef Expression
1 climcn1lem.1 . 2 𝑍 = (ℤ𝑀)
2 climcn1lem.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climcn1lem.2 . . 3 (𝜑𝐹𝐴)
4 climcl 11083 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
53, 4syl 14 . 2 (𝜑𝐴 ∈ ℂ)
6 climcn1lem.7 . . . 4 𝐻:ℂ⟶ℂ
76ffvelrni 5562 . . 3 (𝑧 ∈ ℂ → (𝐻𝑧) ∈ ℂ)
87adantl 275 . 2 ((𝜑𝑧 ∈ ℂ) → (𝐻𝑧) ∈ ℂ)
9 climcn1lem.4 . 2 (𝜑𝐺𝑊)
10 climcn1lem.8 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
115, 10sylan 281 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
12 climcn1lem.6 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
13 climcn1lem.9 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))
141, 2, 5, 8, 3, 9, 11, 12, 13climcn1 11109 1 (𝜑𝐺 ⇝ (𝐻𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417  wrex 2418   class class class wbr 3937  wf 5127  cfv 5131  (class class class)co 5782  cc 7642   < clt 7824  cmin 7957  cz 9078  cuz 9350  +crp 9470  abscabs 10801  cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-clim 11080
This theorem is referenced by:  climabs  11121  climcj  11122  climre  11123  climim  11124
  Copyright terms: Public domain W3C validator