![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climcn1lem | GIF version |
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
climcn1lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climcn1lem.2 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climcn1lem.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climcn1lem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climcn1lem.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climcn1lem.7 | ⊢ 𝐻:ℂ⟶ℂ |
climcn1lem.8 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
climcn1lem.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) |
Ref | Expression |
---|---|
climcn1lem | ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climcn1lem.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climcn1lem.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climcn1lem.2 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climcl 10666 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | climcn1lem.7 | . . . 4 ⊢ 𝐻:ℂ⟶ℂ | |
7 | 6 | ffvelrni 5433 | . . 3 ⊢ (𝑧 ∈ ℂ → (𝐻‘𝑧) ∈ ℂ) |
8 | 7 | adantl 271 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐻‘𝑧) ∈ ℂ) |
9 | climcn1lem.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
10 | climcn1lem.8 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) | |
11 | 5, 10 | sylan 277 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
12 | climcn1lem.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
13 | climcn1lem.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) | |
14 | 1, 2, 5, 8, 3, 9, 11, 12, 13 | climcn1 10693 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 ∀wral 2359 ∃wrex 2360 class class class wbr 3845 ⟶wf 5011 ‘cfv 5015 (class class class)co 5652 ℂcc 7346 < clt 7520 − cmin 7651 ℤcz 8748 ℤ≥cuz 9017 ℝ+crp 9132 abscabs 10426 ⇝ cli 10662 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-addcom 7443 ax-addass 7445 ax-distr 7447 ax-i2m1 7448 ax-0lt1 7449 ax-0id 7451 ax-rnegex 7452 ax-cnre 7454 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 ax-pre-apti 7458 ax-pre-ltadd 7459 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 df-sub 7653 df-neg 7654 df-inn 8421 df-n0 8672 df-z 8749 df-uz 9018 df-clim 10663 |
This theorem is referenced by: climabs 10704 climcj 10705 climre 10706 climim 10707 |
Copyright terms: Public domain | W3C validator |