ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1lem GIF version

Theorem climcn1lem 11825
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climcn1lem.1 𝑍 = (ℤ𝑀)
climcn1lem.2 (𝜑𝐹𝐴)
climcn1lem.4 (𝜑𝐺𝑊)
climcn1lem.5 (𝜑𝑀 ∈ ℤ)
climcn1lem.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climcn1lem.7 𝐻:ℂ⟶ℂ
climcn1lem.8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
climcn1lem.9 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))
Assertion
Ref Expression
climcn1lem (𝜑𝐺 ⇝ (𝐻𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝑘,𝐹,𝑦,𝑧   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦   𝑘,𝐻,𝑥,𝑦,𝑧   𝑘,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1lem
StepHypRef Expression
1 climcn1lem.1 . 2 𝑍 = (ℤ𝑀)
2 climcn1lem.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climcn1lem.2 . . 3 (𝜑𝐹𝐴)
4 climcl 11788 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
53, 4syl 14 . 2 (𝜑𝐴 ∈ ℂ)
6 climcn1lem.7 . . . 4 𝐻:ℂ⟶ℂ
76ffvelcdmi 5768 . . 3 (𝑧 ∈ ℂ → (𝐻𝑧) ∈ ℂ)
87adantl 277 . 2 ((𝜑𝑧 ∈ ℂ) → (𝐻𝑧) ∈ ℂ)
9 climcn1lem.4 . 2 (𝜑𝐺𝑊)
10 climcn1lem.8 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
115, 10sylan 283 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
12 climcn1lem.6 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
13 climcn1lem.9 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))
141, 2, 5, 8, 3, 9, 11, 12, 13climcn1 11814 1 (𝜑𝐺 ⇝ (𝐻𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  wf 5313  cfv 5317  (class class class)co 6000  cc 7993   < clt 8177  cmin 8313  cz 9442  cuz 9718  +crp 9845  abscabs 11503  cli 11784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-clim 11785
This theorem is referenced by:  climabs  11826  climcj  11827  climre  11828  climim  11829
  Copyright terms: Public domain W3C validator