| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climcn1lem | GIF version | ||
| Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| Ref | Expression |
|---|---|
| climcn1lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climcn1lem.2 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climcn1lem.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| climcn1lem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climcn1lem.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| climcn1lem.7 | ⊢ 𝐻:ℂ⟶ℂ |
| climcn1lem.8 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
| climcn1lem.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) |
| Ref | Expression |
|---|---|
| climcn1lem | ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn1lem.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climcn1lem.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climcn1lem.2 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 4 | climcl 11788 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 6 | climcn1lem.7 | . . . 4 ⊢ 𝐻:ℂ⟶ℂ | |
| 7 | 6 | ffvelcdmi 5768 | . . 3 ⊢ (𝑧 ∈ ℂ → (𝐻‘𝑧) ∈ ℂ) |
| 8 | 7 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐻‘𝑧) ∈ ℂ) |
| 9 | climcn1lem.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 10 | climcn1lem.8 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) | |
| 11 | 5, 10 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) |
| 12 | climcn1lem.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 13 | climcn1lem.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) | |
| 14 | 1, 2, 5, 8, 3, 9, 11, 12, 13 | climcn1 11814 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 class class class wbr 4082 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 < clt 8177 − cmin 8313 ℤcz 9442 ℤ≥cuz 9718 ℝ+crp 9845 abscabs 11503 ⇝ cli 11784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-clim 11785 |
| This theorem is referenced by: climabs 11826 climcj 11827 climre 11828 climim 11829 |
| Copyright terms: Public domain | W3C validator |