ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1lem GIF version

Theorem climcn1lem 11462
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climcn1lem.1 𝑍 = (ℤ𝑀)
climcn1lem.2 (𝜑𝐹𝐴)
climcn1lem.4 (𝜑𝐺𝑊)
climcn1lem.5 (𝜑𝑀 ∈ ℤ)
climcn1lem.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climcn1lem.7 𝐻:ℂ⟶ℂ
climcn1lem.8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
climcn1lem.9 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))
Assertion
Ref Expression
climcn1lem (𝜑𝐺 ⇝ (𝐻𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝑘,𝐹,𝑦,𝑧   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦   𝑘,𝐻,𝑥,𝑦,𝑧   𝑘,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1lem
StepHypRef Expression
1 climcn1lem.1 . 2 𝑍 = (ℤ𝑀)
2 climcn1lem.5 . 2 (𝜑𝑀 ∈ ℤ)
3 climcn1lem.2 . . 3 (𝜑𝐹𝐴)
4 climcl 11425 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
53, 4syl 14 . 2 (𝜑𝐴 ∈ ℂ)
6 climcn1lem.7 . . . 4 𝐻:ℂ⟶ℂ
76ffvelcdmi 5692 . . 3 (𝑧 ∈ ℂ → (𝐻𝑧) ∈ ℂ)
87adantl 277 . 2 ((𝜑𝑧 ∈ ℂ) → (𝐻𝑧) ∈ ℂ)
9 climcn1lem.4 . 2 (𝜑𝐺𝑊)
10 climcn1lem.8 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
115, 10sylan 283 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))
12 climcn1lem.6 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
13 climcn1lem.9 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))
141, 2, 5, 8, 3, 9, 11, 12, 13climcn1 11451 1 (𝜑𝐺 ⇝ (𝐻𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wrex 2473   class class class wbr 4029  wf 5250  cfv 5254  (class class class)co 5918  cc 7870   < clt 8054  cmin 8190  cz 9317  cuz 9592  +crp 9719  abscabs 11141  cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-clim 11422
This theorem is referenced by:  climabs  11463  climcj  11464  climre  11465  climim  11466
  Copyright terms: Public domain W3C validator