![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfmptid | GIF version |
Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
cncfmptid | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3163 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
2 | simpr 110 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ) | |
3 | simpll 527 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝑇) | |
4 | simpr 110 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
5 | 3, 4 | sseldd 3156 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑇) |
6 | 5 | fmpttd 5671 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥):𝑆⟶𝑇) |
7 | simpr 110 | . . . 4 ⊢ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
8 | 7 | a1i 9 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
9 | eqid 2177 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑆 ↦ 𝑥) = (𝑥 ∈ 𝑆 ↦ 𝑥) | |
10 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
11 | simprll 537 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
12 | 9, 10, 11, 11 | fvmptd3 5609 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) = 𝑦) |
13 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
14 | simprlr 538 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ 𝑆) | |
15 | 9, 13, 14, 14 | fvmptd3 5609 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧) = 𝑧) |
16 | 12, 15 | oveq12d 5892 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧)) = (𝑦 − 𝑧)) |
17 | 16 | fveq2d 5519 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
18 | 17 | breq1d 4013 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
19 | 18 | exbiri 382 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤))) |
20 | 6, 8, 19 | elcncf1di 13959 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇))) |
21 | 1, 2, 20 | mp2and 433 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ⊆ wss 3129 class class class wbr 4003 ↦ cmpt 4064 ‘cfv 5216 (class class class)co 5874 ℂcc 7808 < clt 7990 − cmin 8126 ℝ+crp 9651 abscabs 11001 –cn→ccncf 13950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-map 6649 df-cncf 13951 |
This theorem is referenced by: expcncf 13985 dvcnp2cntop 14056 |
Copyright terms: Public domain | W3C validator |