Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncfmptid | GIF version |
Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
cncfmptid | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3155 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
2 | simpr 109 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ) | |
3 | simpll 524 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝑇) | |
4 | simpr 109 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
5 | 3, 4 | sseldd 3148 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑇) |
6 | 5 | fmpttd 5651 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥):𝑆⟶𝑇) |
7 | simpr 109 | . . . 4 ⊢ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
8 | 7 | a1i 9 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
9 | eqid 2170 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑆 ↦ 𝑥) = (𝑥 ∈ 𝑆 ↦ 𝑥) | |
10 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
11 | simprll 532 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
12 | 9, 10, 11, 11 | fvmptd3 5589 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) = 𝑦) |
13 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
14 | simprlr 533 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ 𝑆) | |
15 | 9, 13, 14, 14 | fvmptd3 5589 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧) = 𝑧) |
16 | 12, 15 | oveq12d 5871 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧)) = (𝑦 − 𝑧)) |
17 | 16 | fveq2d 5500 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
18 | 17 | breq1d 3999 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
19 | 18 | exbiri 380 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤))) |
20 | 6, 8, 19 | elcncf1di 13360 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇))) |
21 | 1, 2, 20 | mp2and 431 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3989 ↦ cmpt 4050 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 < clt 7954 − cmin 8090 ℝ+crp 9610 abscabs 10961 –cn→ccncf 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 df-cncf 13352 |
This theorem is referenced by: expcncf 13386 dvcnp2cntop 13457 |
Copyright terms: Public domain | W3C validator |