![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfmptid | GIF version |
Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
cncfmptid | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3175 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
2 | simpr 110 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ) | |
3 | simpll 527 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝑇) | |
4 | simpr 110 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
5 | 3, 4 | sseldd 3168 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑇) |
6 | 5 | fmpttd 5684 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥):𝑆⟶𝑇) |
7 | simpr 110 | . . . 4 ⊢ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
8 | 7 | a1i 9 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
9 | eqid 2187 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑆 ↦ 𝑥) = (𝑥 ∈ 𝑆 ↦ 𝑥) | |
10 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
11 | simprll 537 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
12 | 9, 10, 11, 11 | fvmptd3 5622 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) = 𝑦) |
13 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
14 | simprlr 538 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ 𝑆) | |
15 | 9, 13, 14, 14 | fvmptd3 5622 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧) = 𝑧) |
16 | 12, 15 | oveq12d 5906 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧)) = (𝑦 − 𝑧)) |
17 | 16 | fveq2d 5531 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
18 | 17 | breq1d 4025 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
19 | 18 | exbiri 382 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤))) |
20 | 6, 8, 19 | elcncf1di 14306 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇))) |
21 | 1, 2, 20 | mp2and 433 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 ⊆ wss 3141 class class class wbr 4015 ↦ cmpt 4076 ‘cfv 5228 (class class class)co 5888 ℂcc 7822 < clt 8005 − cmin 8141 ℝ+crp 9666 abscabs 11019 –cn→ccncf 14297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-map 6663 df-cncf 14298 |
This theorem is referenced by: expcncf 14332 dvcnp2cntop 14403 |
Copyright terms: Public domain | W3C validator |