ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptid GIF version

Theorem cncfmptid 14776
Description: The identity function is a continuous function on . (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptid
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr 3188 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
2 simpr 110 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
3 simpll 527 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑆𝑇)
4 simpr 110 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑥𝑆)
53, 4sseldd 3181 . . . 4 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑥𝑇)
65fmpttd 5714 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥):𝑆𝑇)
7 simpr 110 . . . 4 ((𝑦𝑆𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
87a1i 9 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑦𝑆𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+))
9 eqid 2193 . . . . . . . 8 (𝑥𝑆𝑥) = (𝑥𝑆𝑥)
10 id 19 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
11 simprll 537 . . . . . . . 8 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑦𝑆)
129, 10, 11, 11fvmptd3 5652 . . . . . . 7 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥𝑆𝑥)‘𝑦) = 𝑦)
13 id 19 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
14 simprlr 538 . . . . . . . 8 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑧𝑆)
159, 13, 14, 14fvmptd3 5652 . . . . . . 7 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥𝑆𝑥)‘𝑧) = 𝑧)
1612, 15oveq12d 5937 . . . . . 6 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → (((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧)) = (𝑦𝑧))
1716fveq2d 5559 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) = (abs‘(𝑦𝑧)))
1817breq1d 4040 . . . 4 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) < 𝑤 ↔ (abs‘(𝑦𝑧)) < 𝑤))
1918exbiri 382 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦𝑧)) < 𝑤 → (abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) < 𝑤)))
206, 8, 19elcncf1di 14758 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇)))
211, 2, 20mp2and 433 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wss 3154   class class class wbr 4030  cmpt 4091  cfv 5255  (class class class)co 5919  cc 7872   < clt 8056  cmin 8192  +crp 9722  abscabs 11144  cnccncf 14749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706  df-cncf 14750
This theorem is referenced by:  idcncf  14780  expcncf  14788  hovercncf  14825  dvcnp2cntop  14878
  Copyright terms: Public domain W3C validator