ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptid GIF version

Theorem cncfmptid 12741
Description: The identity function is a continuous function on . (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptid
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr 3100 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
2 simpr 109 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
3 simpll 518 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑆𝑇)
4 simpr 109 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑥𝑆)
53, 4sseldd 3093 . . . 4 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑥𝑇)
65fmpttd 5568 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥):𝑆𝑇)
7 simpr 109 . . . 4 ((𝑦𝑆𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
87a1i 9 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑦𝑆𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+))
9 eqid 2137 . . . . . . . 8 (𝑥𝑆𝑥) = (𝑥𝑆𝑥)
10 id 19 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
11 simprll 526 . . . . . . . 8 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑦𝑆)
129, 10, 11, 11fvmptd3 5507 . . . . . . 7 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥𝑆𝑥)‘𝑦) = 𝑦)
13 id 19 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
14 simprlr 527 . . . . . . . 8 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑧𝑆)
159, 13, 14, 14fvmptd3 5507 . . . . . . 7 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥𝑆𝑥)‘𝑧) = 𝑧)
1612, 15oveq12d 5785 . . . . . 6 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → (((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧)) = (𝑦𝑧))
1716fveq2d 5418 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) = (abs‘(𝑦𝑧)))
1817breq1d 3934 . . . 4 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) < 𝑤 ↔ (abs‘(𝑦𝑧)) < 𝑤))
1918exbiri 379 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦𝑧)) < 𝑤 → (abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) < 𝑤)))
206, 8, 19elcncf1di 12724 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇)))
211, 2, 20mp2and 429 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  wss 3066   class class class wbr 3924  cmpt 3984  cfv 5118  (class class class)co 5767  cc 7611   < clt 7793  cmin 7926  +crp 9434  abscabs 10762  cnccncf 12715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-map 6537  df-cncf 12716
This theorem is referenced by:  expcncf  12750  dvcnp2cntop  12821
  Copyright terms: Public domain W3C validator