ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptid GIF version

Theorem cncfmptid 15119
Description: The identity function is a continuous function on . (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptid
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr 3203 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
2 simpr 110 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
3 simpll 527 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑆𝑇)
4 simpr 110 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑥𝑆)
53, 4sseldd 3196 . . . 4 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝑥𝑇)
65fmpttd 5745 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥):𝑆𝑇)
7 simpr 110 . . . 4 ((𝑦𝑆𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
87a1i 9 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑦𝑆𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+))
9 eqid 2206 . . . . . . . 8 (𝑥𝑆𝑥) = (𝑥𝑆𝑥)
10 id 19 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
11 simprll 537 . . . . . . . 8 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑦𝑆)
129, 10, 11, 11fvmptd3 5683 . . . . . . 7 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥𝑆𝑥)‘𝑦) = 𝑦)
13 id 19 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
14 simprlr 538 . . . . . . . 8 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑧𝑆)
159, 13, 14, 14fvmptd3 5683 . . . . . . 7 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥𝑆𝑥)‘𝑧) = 𝑧)
1612, 15oveq12d 5972 . . . . . 6 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → (((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧)) = (𝑦𝑧))
1716fveq2d 5590 . . . . 5 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) = (abs‘(𝑦𝑧)))
1817breq1d 4058 . . . 4 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+)) → ((abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) < 𝑤 ↔ (abs‘(𝑦𝑧)) < 𝑤))
1918exbiri 382 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → (((𝑦𝑆𝑧𝑆) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦𝑧)) < 𝑤 → (abs‘(((𝑥𝑆𝑥)‘𝑦) − ((𝑥𝑆𝑥)‘𝑧))) < 𝑤)))
206, 8, 19elcncf1di 15101 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇)))
211, 2, 20mp2and 433 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wss 3168   class class class wbr 4048  cmpt 4110  cfv 5277  (class class class)co 5954  cc 7936   < clt 8120  cmin 8256  +crp 9788  abscabs 11358  cnccncf 15092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-map 6747  df-cncf 15093
This theorem is referenced by:  idcncf  15123  expcncf  15131  hovercncf  15168  dvcnp2cntop  15221
  Copyright terms: Public domain W3C validator