![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfmptid | GIF version |
Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
cncfmptid | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3187 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
2 | simpr 110 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ) | |
3 | simpll 527 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝑇) | |
4 | simpr 110 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
5 | 3, 4 | sseldd 3180 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑇) |
6 | 5 | fmpttd 5713 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥):𝑆⟶𝑇) |
7 | simpr 110 | . . . 4 ⊢ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
8 | 7 | a1i 9 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
9 | eqid 2193 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑆 ↦ 𝑥) = (𝑥 ∈ 𝑆 ↦ 𝑥) | |
10 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
11 | simprll 537 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
12 | 9, 10, 11, 11 | fvmptd3 5651 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) = 𝑦) |
13 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
14 | simprlr 538 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ 𝑆) | |
15 | 9, 13, 14, 14 | fvmptd3 5651 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧) = 𝑧) |
16 | 12, 15 | oveq12d 5936 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧)) = (𝑦 − 𝑧)) |
17 | 16 | fveq2d 5558 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
18 | 17 | breq1d 4039 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
19 | 18 | exbiri 382 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤))) |
20 | 6, 8, 19 | elcncf1di 14734 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇))) |
21 | 1, 2, 20 | mp2and 433 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ⊆ wss 3153 class class class wbr 4029 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 < clt 8054 − cmin 8190 ℝ+crp 9719 abscabs 11141 –cn→ccncf 14725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-map 6704 df-cncf 14726 |
This theorem is referenced by: idcncf 14755 expcncf 14763 hovercncf 14800 dvcnp2cntop 14848 |
Copyright terms: Public domain | W3C validator |