| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfmptid | GIF version | ||
| Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.) |
| Ref | Expression |
|---|---|
| cncfmptid | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr 3232 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
| 2 | simpr 110 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ) | |
| 3 | simpll 527 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ 𝑇) | |
| 4 | simpr 110 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 5 | 3, 4 | sseldd 3225 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑇) |
| 6 | 5 | fmpttd 5792 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥):𝑆⟶𝑇) |
| 7 | simpr 110 | . . . 4 ⊢ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+) | |
| 8 | 7 | a1i 9 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)) |
| 9 | eqid 2229 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑆 ↦ 𝑥) = (𝑥 ∈ 𝑆 ↦ 𝑥) | |
| 10 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 11 | simprll 537 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
| 12 | 9, 10, 11, 11 | fvmptd3 5730 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) = 𝑦) |
| 13 | id 19 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
| 14 | simprlr 538 | . . . . . . . 8 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → 𝑧 ∈ 𝑆) | |
| 15 | 9, 13, 14, 14 | fvmptd3 5730 | . . . . . . 7 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧) = 𝑧) |
| 16 | 12, 15 | oveq12d 6025 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧)) = (𝑦 − 𝑧)) |
| 17 | 16 | fveq2d 5633 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) = (abs‘(𝑦 − 𝑧))) |
| 18 | 17 | breq1d 4093 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+)) → ((abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤 ↔ (abs‘(𝑦 − 𝑧)) < 𝑤)) |
| 19 | 18 | exbiri 382 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ ℝ+) → ((abs‘(𝑦 − 𝑧)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝑥)‘𝑧))) < 𝑤))) |
| 20 | 6, 8, 19 | elcncf1di 15261 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇))) |
| 21 | 1, 2, 20 | mp2and 433 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 class class class wbr 4083 ↦ cmpt 4145 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 < clt 8189 − cmin 8325 ℝ+crp 9857 abscabs 11516 –cn→ccncf 15252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-map 6805 df-cncf 15253 |
| This theorem is referenced by: idcncf 15283 expcncf 15291 hovercncf 15328 dvcnp2cntop 15381 |
| Copyright terms: Public domain | W3C validator |