| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decsubi | GIF version | ||
| Description: Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
| decsubi.5 | ⊢ (𝐵 − 𝑁) = 𝐶 |
| Ref | Expression |
|---|---|
| decsubi | ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 9603 | . . . . 5 ⊢ ;10 ∈ ℕ0 | |
| 2 | decaddi.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | nn0mulcli 9415 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 4 | 3 | nn0cni 9389 | . . 3 ⊢ (;10 · 𝐴) ∈ ℂ |
| 5 | decaddi.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 9389 | . . 3 ⊢ 𝐵 ∈ ℂ |
| 7 | decaddi.3 | . . . 4 ⊢ 𝑁 ∈ ℕ0 | |
| 8 | 7 | nn0cni 9389 | . . 3 ⊢ 𝑁 ∈ ℂ |
| 9 | 4, 6, 8 | addsubassi 8445 | . 2 ⊢ (((;10 · 𝐴) + 𝐵) − 𝑁) = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 10 | decaddi.4 | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
| 11 | dfdec10 9589 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 12 | 10, 11 | eqtri 2250 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
| 13 | 12 | oveq1i 6017 | . 2 ⊢ (𝑀 − 𝑁) = (((;10 · 𝐴) + 𝐵) − 𝑁) |
| 14 | dfdec10 9589 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 15 | decsubi.5 | . . . . 5 ⊢ (𝐵 − 𝑁) = 𝐶 | |
| 16 | 15 | eqcomi 2233 | . . . 4 ⊢ 𝐶 = (𝐵 − 𝑁) |
| 17 | 16 | oveq2i 6018 | . . 3 ⊢ ((;10 · 𝐴) + 𝐶) = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 18 | 14, 17 | eqtri 2250 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 19 | 9, 13, 18 | 3eqtr4i 2260 | 1 ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 − cmin 8325 ℕ0cn0 9377 ;cdc 9586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |