ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsubi GIF version

Theorem decsubi 9392
Description: Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decaddi.1 𝐴 ∈ ℕ0
decaddi.2 𝐵 ∈ ℕ0
decaddi.3 𝑁 ∈ ℕ0
decaddi.4 𝑀 = 𝐴𝐵
decaddci.5 (𝐴 + 1) = 𝐷
decsubi.5 (𝐵𝑁) = 𝐶
Assertion
Ref Expression
decsubi (𝑀𝑁) = 𝐴𝐶

Proof of Theorem decsubi
StepHypRef Expression
1 10nn0 9347 . . . . 5 10 ∈ ℕ0
2 decaddi.1 . . . . 5 𝐴 ∈ ℕ0
31, 2nn0mulcli 9160 . . . 4 (10 · 𝐴) ∈ ℕ0
43nn0cni 9134 . . 3 (10 · 𝐴) ∈ ℂ
5 decaddi.2 . . . 4 𝐵 ∈ ℕ0
65nn0cni 9134 . . 3 𝐵 ∈ ℂ
7 decaddi.3 . . . 4 𝑁 ∈ ℕ0
87nn0cni 9134 . . 3 𝑁 ∈ ℂ
94, 6, 8addsubassi 8197 . 2 (((10 · 𝐴) + 𝐵) − 𝑁) = ((10 · 𝐴) + (𝐵𝑁))
10 decaddi.4 . . . 4 𝑀 = 𝐴𝐵
11 dfdec10 9333 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1210, 11eqtri 2191 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
1312oveq1i 5860 . 2 (𝑀𝑁) = (((10 · 𝐴) + 𝐵) − 𝑁)
14 dfdec10 9333 . . 3 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
15 decsubi.5 . . . . 5 (𝐵𝑁) = 𝐶
1615eqcomi 2174 . . . 4 𝐶 = (𝐵𝑁)
1716oveq2i 5861 . . 3 ((10 · 𝐴) + 𝐶) = ((10 · 𝐴) + (𝐵𝑁))
1814, 17eqtri 2191 . 2 𝐴𝐶 = ((10 · 𝐴) + (𝐵𝑁))
199, 13, 183eqtr4i 2201 1 (𝑀𝑁) = 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  (class class class)co 5850  0cc0 7761  1c1 7762   + caddc 7764   · cmul 7766  cmin 8077  0cn0 9122  cdc 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-sub 8079  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-9 8931  df-n0 9123  df-dec 9331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator