ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decsubi GIF version

Theorem decsubi 9475
Description: Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decaddi.1 𝐴 ∈ ℕ0
decaddi.2 𝐵 ∈ ℕ0
decaddi.3 𝑁 ∈ ℕ0
decaddi.4 𝑀 = 𝐴𝐵
decaddci.5 (𝐴 + 1) = 𝐷
decsubi.5 (𝐵𝑁) = 𝐶
Assertion
Ref Expression
decsubi (𝑀𝑁) = 𝐴𝐶

Proof of Theorem decsubi
StepHypRef Expression
1 10nn0 9430 . . . . 5 10 ∈ ℕ0
2 decaddi.1 . . . . 5 𝐴 ∈ ℕ0
31, 2nn0mulcli 9243 . . . 4 (10 · 𝐴) ∈ ℕ0
43nn0cni 9217 . . 3 (10 · 𝐴) ∈ ℂ
5 decaddi.2 . . . 4 𝐵 ∈ ℕ0
65nn0cni 9217 . . 3 𝐵 ∈ ℂ
7 decaddi.3 . . . 4 𝑁 ∈ ℕ0
87nn0cni 9217 . . 3 𝑁 ∈ ℂ
94, 6, 8addsubassi 8277 . 2 (((10 · 𝐴) + 𝐵) − 𝑁) = ((10 · 𝐴) + (𝐵𝑁))
10 decaddi.4 . . . 4 𝑀 = 𝐴𝐵
11 dfdec10 9416 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1210, 11eqtri 2210 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
1312oveq1i 5905 . 2 (𝑀𝑁) = (((10 · 𝐴) + 𝐵) − 𝑁)
14 dfdec10 9416 . . 3 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
15 decsubi.5 . . . . 5 (𝐵𝑁) = 𝐶
1615eqcomi 2193 . . . 4 𝐶 = (𝐵𝑁)
1716oveq2i 5906 . . 3 ((10 · 𝐴) + 𝐶) = ((10 · 𝐴) + (𝐵𝑁))
1814, 17eqtri 2210 . 2 𝐴𝐶 = ((10 · 𝐴) + (𝐵𝑁))
199, 13, 183eqtr4i 2220 1 (𝑀𝑁) = 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160  (class class class)co 5895  0cc0 7840  1c1 7841   + caddc 7843   · cmul 7845  cmin 8157  0cn0 9205  cdc 9413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-cnre 7951
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-sub 8159  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-7 9012  df-8 9013  df-9 9014  df-n0 9206  df-dec 9414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator