| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decsubi | GIF version | ||
| Description: Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
| decsubi.5 | ⊢ (𝐵 − 𝑁) = 𝐶 |
| Ref | Expression |
|---|---|
| decsubi | ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 9534 | . . . . 5 ⊢ ;10 ∈ ℕ0 | |
| 2 | decaddi.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | nn0mulcli 9346 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 4 | 3 | nn0cni 9320 | . . 3 ⊢ (;10 · 𝐴) ∈ ℂ |
| 5 | decaddi.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 9320 | . . 3 ⊢ 𝐵 ∈ ℂ |
| 7 | decaddi.3 | . . . 4 ⊢ 𝑁 ∈ ℕ0 | |
| 8 | 7 | nn0cni 9320 | . . 3 ⊢ 𝑁 ∈ ℂ |
| 9 | 4, 6, 8 | addsubassi 8376 | . 2 ⊢ (((;10 · 𝐴) + 𝐵) − 𝑁) = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 10 | decaddi.4 | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
| 11 | dfdec10 9520 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 12 | 10, 11 | eqtri 2227 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
| 13 | 12 | oveq1i 5964 | . 2 ⊢ (𝑀 − 𝑁) = (((;10 · 𝐴) + 𝐵) − 𝑁) |
| 14 | dfdec10 9520 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 15 | decsubi.5 | . . . . 5 ⊢ (𝐵 − 𝑁) = 𝐶 | |
| 16 | 15 | eqcomi 2210 | . . . 4 ⊢ 𝐶 = (𝐵 − 𝑁) |
| 17 | 16 | oveq2i 5965 | . . 3 ⊢ ((;10 · 𝐴) + 𝐶) = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 18 | 14, 17 | eqtri 2227 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 19 | 9, 13, 18 | 3eqtr4i 2237 | 1 ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5954 0cc0 7938 1c1 7939 + caddc 7941 · cmul 7943 − cmin 8256 ℕ0cn0 9308 ;cdc 9517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-sub 8258 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-9 9115 df-n0 9309 df-dec 9518 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |