ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfioo2 GIF version

Theorem dfioo2 9769
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
dfioo2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
Distinct variable group:   𝑥,𝑤,𝑦

Proof of Theorem dfioo2
StepHypRef Expression
1 ioof 9766 . . 3 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 5272 . . 3 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 fnovim 5879 . . 3 ((,) Fn (ℝ* × ℝ*) → (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)))
41, 2, 3mp2b 8 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦))
5 iooval2 9710 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
65mpoeq3ia 5836 . 2 (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
74, 6eqtri 2160 1 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  {crab 2420  𝒫 cpw 3510   class class class wbr 3929   × cxp 4537   Fn wfn 5118  wf 5119  (class class class)co 5774  cmpo 5776  cr 7631  *cxr 7811   < clt 7812  (,)cioo 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-ioo 9687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator