![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfioo2 | GIF version |
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
dfioo2 | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 10040 | . . 3 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | ffn 5404 | . . 3 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
3 | fnovim 6028 | . . 3 ⊢ ((,) Fn (ℝ* × ℝ*) → (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦))) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)) |
5 | iooval2 9984 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) | |
6 | 5 | mpoeq3ia 5984 | . 2 ⊢ (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) |
7 | 4, 6 | eqtri 2214 | 1 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 {crab 2476 𝒫 cpw 3602 class class class wbr 4030 × cxp 4658 Fn wfn 5250 ⟶wf 5251 (class class class)co 5919 ∈ cmpo 5921 ℝcr 7873 ℝ*cxr 8055 < clt 8056 (,)cioo 9957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-ioo 9961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |