ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfioo2 GIF version

Theorem dfioo2 10103
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
dfioo2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
Distinct variable group:   𝑥,𝑤,𝑦

Proof of Theorem dfioo2
StepHypRef Expression
1 ioof 10100 . . 3 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 5431 . . 3 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 fnovim 6061 . . 3 ((,) Fn (ℝ* × ℝ*) → (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)))
41, 2, 3mp2b 8 . 2 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦))
5 iooval2 10044 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
65mpoeq3ia 6017 . 2 (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ (𝑥(,)𝑦)) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
74, 6eqtri 2227 1 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤𝑤 < 𝑦)})
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  {crab 2489  𝒫 cpw 3617   class class class wbr 4047   × cxp 4677   Fn wfn 5271  wf 5272  (class class class)co 5951  cmpo 5953  cr 7931  *cxr 8113   < clt 8114  (,)cioo 10017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-ioo 10021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator