| Step | Hyp | Ref
| Expression |
| 1 | | brdomi 6817 |
. 2
⊢ (𝐴 ≼ ω →
∃𝑔 𝑔:𝐴–1-1→ω) |
| 2 | | imassrn 5021 |
. . . . 5
⊢ (𝑔 “ 𝐴) ⊆ ran 𝑔 |
| 3 | | f1rn 5467 |
. . . . 5
⊢ (𝑔:𝐴–1-1→ω → ran 𝑔 ⊆ ω) |
| 4 | 2, 3 | sstrid 3195 |
. . . 4
⊢ (𝑔:𝐴–1-1→ω → (𝑔 “ 𝐴) ⊆ ω) |
| 5 | | ssid 3204 |
. . . . . . . . 9
⊢ 𝐴 ⊆ 𝐴 |
| 6 | | f1ores 5522 |
. . . . . . . . 9
⊢ ((𝑔:𝐴–1-1→ω ∧ 𝐴 ⊆ 𝐴) → (𝑔 ↾ 𝐴):𝐴–1-1-onto→(𝑔 “ 𝐴)) |
| 7 | 5, 6 | mpan2 425 |
. . . . . . . 8
⊢ (𝑔:𝐴–1-1→ω → (𝑔 ↾ 𝐴):𝐴–1-1-onto→(𝑔 “ 𝐴)) |
| 8 | | f1fn 5468 |
. . . . . . . . . 10
⊢ (𝑔:𝐴–1-1→ω → 𝑔 Fn 𝐴) |
| 9 | | fnresdm 5370 |
. . . . . . . . . 10
⊢ (𝑔 Fn 𝐴 → (𝑔 ↾ 𝐴) = 𝑔) |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
⊢ (𝑔:𝐴–1-1→ω → (𝑔 ↾ 𝐴) = 𝑔) |
| 11 | 10 | f1oeq1d 5502 |
. . . . . . . 8
⊢ (𝑔:𝐴–1-1→ω → ((𝑔 ↾ 𝐴):𝐴–1-1-onto→(𝑔 “ 𝐴) ↔ 𝑔:𝐴–1-1-onto→(𝑔 “ 𝐴))) |
| 12 | 7, 11 | mpbid 147 |
. . . . . . 7
⊢ (𝑔:𝐴–1-1→ω → 𝑔:𝐴–1-1-onto→(𝑔 “ 𝐴)) |
| 13 | | f1ocnv 5520 |
. . . . . . 7
⊢ (𝑔:𝐴–1-1-onto→(𝑔 “ 𝐴) → ◡𝑔:(𝑔 “ 𝐴)–1-1-onto→𝐴) |
| 14 | 12, 13 | syl 14 |
. . . . . 6
⊢ (𝑔:𝐴–1-1→ω → ◡𝑔:(𝑔 “ 𝐴)–1-1-onto→𝐴) |
| 15 | | f1ofo 5514 |
. . . . . 6
⊢ (◡𝑔:(𝑔 “ 𝐴)–1-1-onto→𝐴 → ◡𝑔:(𝑔 “ 𝐴)–onto→𝐴) |
| 16 | 14, 15 | syl 14 |
. . . . 5
⊢ (𝑔:𝐴–1-1→ω → ◡𝑔:(𝑔 “ 𝐴)–onto→𝐴) |
| 17 | | vex 2766 |
. . . . . . 7
⊢ 𝑔 ∈ V |
| 18 | 17 | cnvex 5209 |
. . . . . 6
⊢ ◡𝑔 ∈ V |
| 19 | | foeq1 5479 |
. . . . . 6
⊢ (𝑓 = ◡𝑔 → (𝑓:(𝑔 “ 𝐴)–onto→𝐴 ↔ ◡𝑔:(𝑔 “ 𝐴)–onto→𝐴)) |
| 20 | 18, 19 | spcev 2859 |
. . . . 5
⊢ (◡𝑔:(𝑔 “ 𝐴)–onto→𝐴 → ∃𝑓 𝑓:(𝑔 “ 𝐴)–onto→𝐴) |
| 21 | 16, 20 | syl 14 |
. . . 4
⊢ (𝑔:𝐴–1-1→ω → ∃𝑓 𝑓:(𝑔 “ 𝐴)–onto→𝐴) |
| 22 | 17 | imaex 5025 |
. . . . 5
⊢ (𝑔 “ 𝐴) ∈ V |
| 23 | | sseq1 3207 |
. . . . . 6
⊢ (𝑠 = (𝑔 “ 𝐴) → (𝑠 ⊆ ω ↔ (𝑔 “ 𝐴) ⊆ ω)) |
| 24 | | foeq2 5480 |
. . . . . . 7
⊢ (𝑠 = (𝑔 “ 𝐴) → (𝑓:𝑠–onto→𝐴 ↔ 𝑓:(𝑔 “ 𝐴)–onto→𝐴)) |
| 25 | 24 | exbidv 1839 |
. . . . . 6
⊢ (𝑠 = (𝑔 “ 𝐴) → (∃𝑓 𝑓:𝑠–onto→𝐴 ↔ ∃𝑓 𝑓:(𝑔 “ 𝐴)–onto→𝐴)) |
| 26 | 23, 25 | anbi12d 473 |
. . . . 5
⊢ (𝑠 = (𝑔 “ 𝐴) → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴) ↔ ((𝑔 “ 𝐴) ⊆ ω ∧ ∃𝑓 𝑓:(𝑔 “ 𝐴)–onto→𝐴))) |
| 27 | 22, 26 | spcev 2859 |
. . . 4
⊢ (((𝑔 “ 𝐴) ⊆ ω ∧ ∃𝑓 𝑓:(𝑔 “ 𝐴)–onto→𝐴) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴)) |
| 28 | 4, 21, 27 | syl2anc 411 |
. . 3
⊢ (𝑔:𝐴–1-1→ω → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴)) |
| 29 | 28 | exlimiv 1612 |
. 2
⊢
(∃𝑔 𝑔:𝐴–1-1→ω → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴)) |
| 30 | 1, 29 | syl 14 |
1
⊢ (𝐴 ≼ ω →
∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴)) |