| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzelre | Unicode version | ||
| Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
| Ref | Expression |
|---|---|
| eluzelre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9719 |
. 2
| |
| 2 | 1 | zred 9557 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-cnex 8078 ax-resscn 8079 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-ov 5997 df-neg 8308 df-z 9435 df-uz 9711 |
| This theorem is referenced by: eluzelcn 9721 fzouzdisj 10366 fzoun 10367 eluzgtdifelfzo 10390 infssuzex 10440 infssuzledc 10441 rebtwn2zlemstep 10459 fldiv4lem1div2uz2 10513 m1modge3gt1 10580 bernneq3 10871 hashfzp1 11033 seq3coll 11051 sumsnf 11906 isprm5 12650 dfphi2 12728 pclemub 12796 pockthg 12866 gsumfzval 13410 logbrec 15619 logbleb 15620 logbgcd1irr 15626 gausslemma2dlem4 15728 |
| Copyright terms: Public domain | W3C validator |