| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzelre | Unicode version | ||
| Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
| Ref | Expression |
|---|---|
| eluzelre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9739 |
. 2
| |
| 2 | 1 | zred 9577 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-cnex 8098 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-neg 8328 df-z 9455 df-uz 9731 |
| This theorem is referenced by: eluzelcn 9741 fzouzdisj 10386 fzoun 10387 eluzgtdifelfzo 10411 infssuzex 10461 infssuzledc 10462 rebtwn2zlemstep 10480 fldiv4lem1div2uz2 10534 m1modge3gt1 10601 bernneq3 10892 hashfzp1 11054 seq3coll 11072 sumsnf 11928 isprm5 12672 dfphi2 12750 pclemub 12818 pockthg 12888 gsumfzval 13432 logbrec 15642 logbleb 15643 logbgcd1irr 15649 gausslemma2dlem4 15751 |
| Copyright terms: Public domain | W3C validator |