ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelre Unicode version

Theorem eluzelre 9540
Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
Assertion
Ref Expression
eluzelre  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )

Proof of Theorem eluzelre
StepHypRef Expression
1 eluzelz 9539 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
21zred 9377 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   ` cfv 5218   RRcr 7812   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-neg 8133  df-z 9256  df-uz 9531
This theorem is referenced by:  eluzelcn  9541  fzouzdisj  10182  eluzgtdifelfzo  10199  rebtwn2zlemstep  10255  m1modge3gt1  10373  bernneq3  10645  hashfzp1  10806  seq3coll  10824  sumsnf  11419  infssuzex  11952  infssuzledc  11953  isprm5  12144  dfphi2  12222  pclemub  12289  pockthg  12357  logbrec  14417  logbleb  14418  logbgcd1irr  14424
  Copyright terms: Public domain W3C validator