ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelre Unicode version

Theorem eluzelre 9605
Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
Assertion
Ref Expression
eluzelre  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )

Proof of Theorem eluzelre
StepHypRef Expression
1 eluzelz 9604 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
21zred 9442 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   ` cfv 5255   RRcr 7873   ZZ>=cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-neg 8195  df-z 9321  df-uz 9596
This theorem is referenced by:  eluzelcn  9606  fzouzdisj  10250  eluzgtdifelfzo  10267  rebtwn2zlemstep  10324  fldiv4lem1div2uz2  10378  m1modge3gt1  10445  bernneq3  10736  hashfzp1  10898  seq3coll  10916  sumsnf  11555  infssuzex  12089  infssuzledc  12090  isprm5  12283  dfphi2  12361  pclemub  12428  pockthg  12498  gsumfzval  12977  logbrec  15133  logbleb  15134  logbgcd1irr  15140  gausslemma2dlem4  15221
  Copyright terms: Public domain W3C validator