ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelre Unicode version

Theorem eluzelre 9660
Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
Assertion
Ref Expression
eluzelre  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )

Proof of Theorem eluzelre
StepHypRef Expression
1 eluzelz 9659 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
21zred 9497 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   ` cfv 5272   RRcr 7926   ZZ>=cuz 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-neg 8248  df-z 9375  df-uz 9651
This theorem is referenced by:  eluzelcn  9661  fzouzdisj  10306  eluzgtdifelfzo  10328  infssuzex  10378  infssuzledc  10379  rebtwn2zlemstep  10397  fldiv4lem1div2uz2  10451  m1modge3gt1  10518  bernneq3  10809  hashfzp1  10971  seq3coll  10989  sumsnf  11753  isprm5  12497  dfphi2  12575  pclemub  12643  pockthg  12713  gsumfzval  13256  logbrec  15465  logbleb  15466  logbgcd1irr  15472  gausslemma2dlem4  15574
  Copyright terms: Public domain W3C validator