| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzelre | Unicode version | ||
| Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
| Ref | Expression |
|---|---|
| eluzelre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9627 |
. 2
| |
| 2 | 1 | zred 9465 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 df-uz 9619 |
| This theorem is referenced by: eluzelcn 9629 fzouzdisj 10273 eluzgtdifelfzo 10290 infssuzex 10340 infssuzledc 10341 rebtwn2zlemstep 10359 fldiv4lem1div2uz2 10413 m1modge3gt1 10480 bernneq3 10771 hashfzp1 10933 seq3coll 10951 sumsnf 11591 isprm5 12335 dfphi2 12413 pclemub 12481 pockthg 12551 gsumfzval 13093 logbrec 15280 logbleb 15281 logbgcd1irr 15287 gausslemma2dlem4 15389 |
| Copyright terms: Public domain | W3C validator |