ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 Unicode version

Theorem isprm5 12464
Description: One need only check prime divisors of  P up to  sqr P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isprm3 12440 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
) )
2 breq1 4047 . . . . . . . 8  |-  ( x  =  z  ->  (
x  ||  P  <->  z  ||  P ) )
32notbid 669 . . . . . . 7  |-  ( x  =  z  ->  ( -.  x  ||  P  <->  -.  z  ||  P ) )
4 simpllr 534 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P )
5 2z 9400 . . . . . . . . . 10  |-  2  e.  ZZ
65a1i 9 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  2  e.  ZZ )
7 eluzelz 9657 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
87ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  P  e.  ZZ )
9 peano2zm 9410 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
108, 9syl 14 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  ( P  -  1 )  e.  ZZ )
11 prmz 12433 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  z  e.  ZZ )
1211ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  ZZ )
136, 10, 123jca 1180 . . . . . . . 8  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
2  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  z  e.  ZZ )
)
14 prmuz2 12453 . . . . . . . . . . 11  |-  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
)
15 eluzle 9660 . . . . . . . . . . 11  |-  ( z  e.  ( ZZ>= `  2
)  ->  2  <_  z )
1614, 15syl 14 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  2  <_ 
z )
1716ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  2  <_  z )
18 eluzelre 9658 . . . . . . . . . . . . 13  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  RR )
1914, 18syl 14 . . . . . . . . . . . 12  |-  ( z  e.  Prime  ->  z  e.  RR )
2019ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  RR )
2120resqcld 10844 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z ^ 2 )  e.  RR )
22 eluzelre 9658 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
2322ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  P  e.  RR )
24 prmnn 12432 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  z  e.  NN )
2524nncnd 9050 . . . . . . . . . . . . . 14  |-  ( z  e.  Prime  ->  z  e.  CC )
2625exp1d 10813 . . . . . . . . . . . . 13  |-  ( z  e.  Prime  ->  ( z ^ 1 )  =  z )
27 1lt2 9206 . . . . . . . . . . . . . 14  |-  1  <  2
28 1nn0 9311 . . . . . . . . . . . . . . . 16  |-  1  e.  NN0
2928a1i 9 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  1  e. 
NN0 )
30 2nn0 9312 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
3130a1i 9 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  2  e. 
NN0 )
32 prmgt1 12454 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  1  < 
z )
33 nn0ltexp2 10854 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  RR  /\  1  e.  NN0  /\  2  e.  NN0 )  /\  1  <  z )  -> 
( 1  <  2  <->  ( z ^ 1 )  <  ( z ^
2 ) ) )
3419, 29, 31, 32, 33syl31anc 1253 . . . . . . . . . . . . . 14  |-  ( z  e.  Prime  ->  ( 1  <  2  <->  ( z ^ 1 )  < 
( z ^ 2 ) ) )
3527, 34mpbii 148 . . . . . . . . . . . . 13  |-  ( z  e.  Prime  ->  ( z ^ 1 )  < 
( z ^ 2 ) )
3626, 35eqbrtrrd 4068 . . . . . . . . . . . 12  |-  ( z  e.  Prime  ->  z  < 
( z ^ 2 ) )
3736ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <  ( z ^ 2 ) )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z ^ 2 )  <_  P )
3920, 21, 23, 37, 38ltletrd 8496 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <  P )
40 zltlem1 9430 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
4112, 8, 40syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z  <  P  <->  z  <_  ( P  -  1 ) ) )
4239, 41mpbid 147 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <_  ( P  -  1 ) )
4317, 42jca 306 . . . . . . . 8  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
2  <_  z  /\  z  <_  ( P  - 
1 ) ) )
44 elfz2 10137 . . . . . . . 8  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( (
2  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  z  e.  ZZ )  /\  ( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
4513, 43, 44sylanbrc 417 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  ( 2 ... ( P  -  1 ) ) )
463, 4, 45rspcdva 2882 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  -.  z  ||  P )
4746ex 115 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  /\  z  e.  Prime )  ->  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
4847ralrimiva 2579 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
49 simpll 527 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  P  e.  ( ZZ>= `  2 )
)
50 simplr 528 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
51 simpr 110 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  x  e.  ( 2 ... ( P  -  1 ) ) )
5249, 50, 51isprm5lem 12463 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  -.  x  ||  P )
5352ralrimiva 2579 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  ->  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)
5448, 53impbida 596 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P  <->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
5554pm5.32i 454 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  <-> 
( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
561, 55bitri 184 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2176   A.wral 2484   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   1c1 7926    < clt 8107    <_ cle 8108    - cmin 8243   2c2 9087   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130   ^cexp 10683    || cdvds 12098   Primecprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-prm 12430
This theorem is referenced by:  pockthg  12680
  Copyright terms: Public domain W3C validator