ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 Unicode version

Theorem isprm5 12174
Description: One need only check prime divisors of  P up to  sqr P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isprm3 12150 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
) )
2 breq1 4021 . . . . . . . 8  |-  ( x  =  z  ->  (
x  ||  P  <->  z  ||  P ) )
32notbid 668 . . . . . . 7  |-  ( x  =  z  ->  ( -.  x  ||  P  <->  -.  z  ||  P ) )
4 simpllr 534 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P )
5 2z 9311 . . . . . . . . . 10  |-  2  e.  ZZ
65a1i 9 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  2  e.  ZZ )
7 eluzelz 9567 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
87ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  P  e.  ZZ )
9 peano2zm 9321 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
108, 9syl 14 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  ( P  -  1 )  e.  ZZ )
11 prmz 12143 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  z  e.  ZZ )
1211ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  ZZ )
136, 10, 123jca 1179 . . . . . . . 8  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
2  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  z  e.  ZZ )
)
14 prmuz2 12163 . . . . . . . . . . 11  |-  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
)
15 eluzle 9570 . . . . . . . . . . 11  |-  ( z  e.  ( ZZ>= `  2
)  ->  2  <_  z )
1614, 15syl 14 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  2  <_ 
z )
1716ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  2  <_  z )
18 eluzelre 9568 . . . . . . . . . . . . 13  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  RR )
1914, 18syl 14 . . . . . . . . . . . 12  |-  ( z  e.  Prime  ->  z  e.  RR )
2019ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  RR )
2120resqcld 10711 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z ^ 2 )  e.  RR )
22 eluzelre 9568 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
2322ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  P  e.  RR )
24 prmnn 12142 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  z  e.  NN )
2524nncnd 8963 . . . . . . . . . . . . . 14  |-  ( z  e.  Prime  ->  z  e.  CC )
2625exp1d 10680 . . . . . . . . . . . . 13  |-  ( z  e.  Prime  ->  ( z ^ 1 )  =  z )
27 1lt2 9118 . . . . . . . . . . . . . 14  |-  1  <  2
28 1nn0 9222 . . . . . . . . . . . . . . . 16  |-  1  e.  NN0
2928a1i 9 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  1  e. 
NN0 )
30 2nn0 9223 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
3130a1i 9 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  2  e. 
NN0 )
32 prmgt1 12164 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  1  < 
z )
33 nn0ltexp2 10721 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  RR  /\  1  e.  NN0  /\  2  e.  NN0 )  /\  1  <  z )  -> 
( 1  <  2  <->  ( z ^ 1 )  <  ( z ^
2 ) ) )
3419, 29, 31, 32, 33syl31anc 1252 . . . . . . . . . . . . . 14  |-  ( z  e.  Prime  ->  ( 1  <  2  <->  ( z ^ 1 )  < 
( z ^ 2 ) ) )
3527, 34mpbii 148 . . . . . . . . . . . . 13  |-  ( z  e.  Prime  ->  ( z ^ 1 )  < 
( z ^ 2 ) )
3626, 35eqbrtrrd 4042 . . . . . . . . . . . 12  |-  ( z  e.  Prime  ->  z  < 
( z ^ 2 ) )
3736ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <  ( z ^ 2 ) )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z ^ 2 )  <_  P )
3920, 21, 23, 37, 38ltletrd 8410 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <  P )
40 zltlem1 9340 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
4112, 8, 40syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z  <  P  <->  z  <_  ( P  -  1 ) ) )
4239, 41mpbid 147 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <_  ( P  -  1 ) )
4317, 42jca 306 . . . . . . . 8  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
2  <_  z  /\  z  <_  ( P  - 
1 ) ) )
44 elfz2 10045 . . . . . . . 8  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( (
2  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  z  e.  ZZ )  /\  ( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
4513, 43, 44sylanbrc 417 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  ( 2 ... ( P  -  1 ) ) )
463, 4, 45rspcdva 2861 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  -.  z  ||  P )
4746ex 115 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  /\  z  e.  Prime )  ->  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
4847ralrimiva 2563 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
49 simpll 527 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  P  e.  ( ZZ>= `  2 )
)
50 simplr 528 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
51 simpr 110 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  x  e.  ( 2 ... ( P  -  1 ) ) )
5249, 50, 51isprm5lem 12173 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  -.  x  ||  P )
5352ralrimiva 2563 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  ->  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)
5448, 53impbida 596 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P  <->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
5554pm5.32i 454 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  <-> 
( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
561, 55bitri 184 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2160   A.wral 2468   class class class wbr 4018   ` cfv 5235  (class class class)co 5896   RRcr 7840   1c1 7842    < clt 8022    <_ cle 8023    - cmin 8158   2c2 9000   NN0cn0 9206   ZZcz 9283   ZZ>=cuz 9558   ...cfz 10038   ^cexp 10550    || cdvds 11826   Primecprime 12139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-1o 6441  df-2o 6442  df-er 6559  df-en 6767  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-dvds 11827  df-prm 12140
This theorem is referenced by:  pockthg  12389
  Copyright terms: Public domain W3C validator