ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 Unicode version

Theorem isprm5 12144
Description: One need only check prime divisors of  P up to  sqr P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isprm3 12120 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
) )
2 breq1 4008 . . . . . . . 8  |-  ( x  =  z  ->  (
x  ||  P  <->  z  ||  P ) )
32notbid 667 . . . . . . 7  |-  ( x  =  z  ->  ( -.  x  ||  P  <->  -.  z  ||  P ) )
4 simpllr 534 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P )
5 2z 9283 . . . . . . . . . 10  |-  2  e.  ZZ
65a1i 9 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  2  e.  ZZ )
7 eluzelz 9539 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
87ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  P  e.  ZZ )
9 peano2zm 9293 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
108, 9syl 14 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  ( P  -  1 )  e.  ZZ )
11 prmz 12113 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  z  e.  ZZ )
1211ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  ZZ )
136, 10, 123jca 1177 . . . . . . . 8  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
2  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  z  e.  ZZ )
)
14 prmuz2 12133 . . . . . . . . . . 11  |-  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
)
15 eluzle 9542 . . . . . . . . . . 11  |-  ( z  e.  ( ZZ>= `  2
)  ->  2  <_  z )
1614, 15syl 14 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  2  <_ 
z )
1716ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  2  <_  z )
18 eluzelre 9540 . . . . . . . . . . . . 13  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  RR )
1914, 18syl 14 . . . . . . . . . . . 12  |-  ( z  e.  Prime  ->  z  e.  RR )
2019ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  RR )
2120resqcld 10682 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z ^ 2 )  e.  RR )
22 eluzelre 9540 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
2322ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  P  e.  RR )
24 prmnn 12112 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  z  e.  NN )
2524nncnd 8935 . . . . . . . . . . . . . 14  |-  ( z  e.  Prime  ->  z  e.  CC )
2625exp1d 10651 . . . . . . . . . . . . 13  |-  ( z  e.  Prime  ->  ( z ^ 1 )  =  z )
27 1lt2 9090 . . . . . . . . . . . . . 14  |-  1  <  2
28 1nn0 9194 . . . . . . . . . . . . . . . 16  |-  1  e.  NN0
2928a1i 9 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  1  e. 
NN0 )
30 2nn0 9195 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
3130a1i 9 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  2  e. 
NN0 )
32 prmgt1 12134 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  1  < 
z )
33 nn0ltexp2 10691 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  RR  /\  1  e.  NN0  /\  2  e.  NN0 )  /\  1  <  z )  -> 
( 1  <  2  <->  ( z ^ 1 )  <  ( z ^
2 ) ) )
3419, 29, 31, 32, 33syl31anc 1241 . . . . . . . . . . . . . 14  |-  ( z  e.  Prime  ->  ( 1  <  2  <->  ( z ^ 1 )  < 
( z ^ 2 ) ) )
3527, 34mpbii 148 . . . . . . . . . . . . 13  |-  ( z  e.  Prime  ->  ( z ^ 1 )  < 
( z ^ 2 ) )
3626, 35eqbrtrrd 4029 . . . . . . . . . . . 12  |-  ( z  e.  Prime  ->  z  < 
( z ^ 2 ) )
3736ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <  ( z ^ 2 ) )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z ^ 2 )  <_  P )
3920, 21, 23, 37, 38ltletrd 8382 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <  P )
40 zltlem1 9312 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
4112, 8, 40syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z  <  P  <->  z  <_  ( P  -  1 ) ) )
4239, 41mpbid 147 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <_  ( P  -  1 ) )
4317, 42jca 306 . . . . . . . 8  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
2  <_  z  /\  z  <_  ( P  - 
1 ) ) )
44 elfz2 10017 . . . . . . . 8  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( (
2  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  z  e.  ZZ )  /\  ( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
4513, 43, 44sylanbrc 417 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  ( 2 ... ( P  -  1 ) ) )
463, 4, 45rspcdva 2848 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  -.  z  ||  P )
4746ex 115 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  /\  z  e.  Prime )  ->  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
4847ralrimiva 2550 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
49 simpll 527 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  P  e.  ( ZZ>= `  2 )
)
50 simplr 528 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
51 simpr 110 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  x  e.  ( 2 ... ( P  -  1 ) ) )
5249, 50, 51isprm5lem 12143 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  -.  x  ||  P )
5352ralrimiva 2550 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  ->  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)
5448, 53impbida 596 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P  <->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
5554pm5.32i 454 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  <-> 
( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
561, 55bitri 184 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   A.wral 2455   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RRcr 7812   1c1 7814    < clt 7994    <_ cle 7995    - cmin 8130   2c2 8972   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010   ^cexp 10521    || cdvds 11796   Primecprime 12109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-prm 12110
This theorem is referenced by:  pockthg  12357
  Copyright terms: Public domain W3C validator