ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 Unicode version

Theorem isprm5 12406
Description: One need only check prime divisors of  P up to  sqr P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isprm3 12382 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
) )
2 breq1 4046 . . . . . . . 8  |-  ( x  =  z  ->  (
x  ||  P  <->  z  ||  P ) )
32notbid 668 . . . . . . 7  |-  ( x  =  z  ->  ( -.  x  ||  P  <->  -.  z  ||  P ) )
4 simpllr 534 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P )
5 2z 9399 . . . . . . . . . 10  |-  2  e.  ZZ
65a1i 9 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  2  e.  ZZ )
7 eluzelz 9656 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
87ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  P  e.  ZZ )
9 peano2zm 9409 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
108, 9syl 14 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  ( P  -  1 )  e.  ZZ )
11 prmz 12375 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  z  e.  ZZ )
1211ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  ZZ )
136, 10, 123jca 1179 . . . . . . . 8  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
2  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  z  e.  ZZ )
)
14 prmuz2 12395 . . . . . . . . . . 11  |-  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
)
15 eluzle 9659 . . . . . . . . . . 11  |-  ( z  e.  ( ZZ>= `  2
)  ->  2  <_  z )
1614, 15syl 14 . . . . . . . . . 10  |-  ( z  e.  Prime  ->  2  <_ 
z )
1716ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  2  <_  z )
18 eluzelre 9657 . . . . . . . . . . . . 13  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  RR )
1914, 18syl 14 . . . . . . . . . . . 12  |-  ( z  e.  Prime  ->  z  e.  RR )
2019ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  RR )
2120resqcld 10842 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z ^ 2 )  e.  RR )
22 eluzelre 9657 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
2322ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  P  e.  RR )
24 prmnn 12374 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  z  e.  NN )
2524nncnd 9049 . . . . . . . . . . . . . 14  |-  ( z  e.  Prime  ->  z  e.  CC )
2625exp1d 10811 . . . . . . . . . . . . 13  |-  ( z  e.  Prime  ->  ( z ^ 1 )  =  z )
27 1lt2 9205 . . . . . . . . . . . . . 14  |-  1  <  2
28 1nn0 9310 . . . . . . . . . . . . . . . 16  |-  1  e.  NN0
2928a1i 9 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  1  e. 
NN0 )
30 2nn0 9311 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
3130a1i 9 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  2  e. 
NN0 )
32 prmgt1 12396 . . . . . . . . . . . . . . 15  |-  ( z  e.  Prime  ->  1  < 
z )
33 nn0ltexp2 10852 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  RR  /\  1  e.  NN0  /\  2  e.  NN0 )  /\  1  <  z )  -> 
( 1  <  2  <->  ( z ^ 1 )  <  ( z ^
2 ) ) )
3419, 29, 31, 32, 33syl31anc 1252 . . . . . . . . . . . . . 14  |-  ( z  e.  Prime  ->  ( 1  <  2  <->  ( z ^ 1 )  < 
( z ^ 2 ) ) )
3527, 34mpbii 148 . . . . . . . . . . . . 13  |-  ( z  e.  Prime  ->  ( z ^ 1 )  < 
( z ^ 2 ) )
3626, 35eqbrtrrd 4067 . . . . . . . . . . . 12  |-  ( z  e.  Prime  ->  z  < 
( z ^ 2 ) )
3736ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <  ( z ^ 2 ) )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z ^ 2 )  <_  P )
3920, 21, 23, 37, 38ltletrd 8495 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <  P )
40 zltlem1 9429 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
4112, 8, 40syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
z  <  P  <->  z  <_  ( P  -  1 ) ) )
4239, 41mpbid 147 . . . . . . . . 9  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  <_  ( P  -  1 ) )
4317, 42jca 306 . . . . . . . 8  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  (
2  <_  z  /\  z  <_  ( P  - 
1 ) ) )
44 elfz2 10136 . . . . . . . 8  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( (
2  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  z  e.  ZZ )  /\  ( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
4513, 43, 44sylanbrc 417 . . . . . . 7  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  z  e.  ( 2 ... ( P  -  1 ) ) )
463, 4, 45rspcdva 2881 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)  /\  z  e.  Prime )  /\  ( z ^ 2 )  <_  P )  ->  -.  z  ||  P )
4746ex 115 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  /\  z  e.  Prime )  ->  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
4847ralrimiva 2578 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
49 simpll 527 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  P  e.  ( ZZ>= `  2 )
)
50 simplr 528 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
51 simpr 110 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  x  e.  ( 2 ... ( P  -  1 ) ) )
5249, 50, 51isprm5lem 12405 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  /\  x  e.  ( 2 ... ( P  -  1 ) ) )  ->  -.  x  ||  P )
5352ralrimiva 2578 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )  ->  A. x  e.  ( 2 ... ( P  -  1 ) )  -.  x  ||  P
)
5448, 53impbida 596 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P  <->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
5554pm5.32i 454 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( P  - 
1 ) )  -.  x  ||  P )  <-> 
( P  e.  (
ZZ>= `  2 )  /\  A. z  e.  Prime  (
( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
561, 55bitri 184 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2175   A.wral 2483   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   RRcr 7923   1c1 7925    < clt 8106    <_ cle 8107    - cmin 8242   2c2 9086   NN0cn0 9294   ZZcz 9371   ZZ>=cuz 9647   ...cfz 10129   ^cexp 10681    || cdvds 12040   Primecprime 12371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-dvds 12041  df-prm 12372
This theorem is referenced by:  pockthg  12622
  Copyright terms: Public domain W3C validator