| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzelre | GIF version | ||
| Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
| Ref | Expression |
|---|---|
| eluzelre | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9607 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 2 | 1 | zred 9445 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ‘cfv 5258 ℝcr 7876 ℤ≥cuz 9598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-cnex 7968 ax-resscn 7969 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-neg 8198 df-z 9324 df-uz 9599 |
| This theorem is referenced by: eluzelcn 9609 fzouzdisj 10253 eluzgtdifelfzo 10270 rebtwn2zlemstep 10327 fldiv4lem1div2uz2 10381 m1modge3gt1 10448 bernneq3 10739 hashfzp1 10901 seq3coll 10919 sumsnf 11558 infssuzex 12092 infssuzledc 12093 isprm5 12286 dfphi2 12364 pclemub 12432 pockthg 12502 gsumfzval 13010 logbrec 15168 logbleb 15169 logbgcd1irr 15175 gausslemma2dlem4 15272 |
| Copyright terms: Public domain | W3C validator |