ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelre GIF version

Theorem eluzelre 9476
Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
Assertion
Ref Expression
eluzelre (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)

Proof of Theorem eluzelre
StepHypRef Expression
1 eluzelz 9475 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
21zred 9313 1 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  cfv 5188  cr 7752  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-neg 8072  df-z 9192  df-uz 9467
This theorem is referenced by:  eluzelcn  9477  fzouzdisj  10115  eluzgtdifelfzo  10132  rebtwn2zlemstep  10188  m1modge3gt1  10306  bernneq3  10577  hashfzp1  10737  seq3coll  10755  sumsnf  11350  infssuzex  11882  infssuzledc  11883  isprm5  12074  dfphi2  12152  pclemub  12219  pockthg  12287  logbrec  13518  logbleb  13519  logbgcd1irr  13525
  Copyright terms: Public domain W3C validator