| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzelre | GIF version | ||
| Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
| Ref | Expression |
|---|---|
| eluzelre | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9612 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 2 | 1 | zred 9450 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ‘cfv 5259 ℝcr 7880 ℤ≥cuz 9603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7972 ax-resscn 7973 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5926 df-neg 8202 df-z 9329 df-uz 9604 |
| This theorem is referenced by: eluzelcn 9614 fzouzdisj 10258 eluzgtdifelfzo 10275 infssuzex 10325 infssuzledc 10326 rebtwn2zlemstep 10344 fldiv4lem1div2uz2 10398 m1modge3gt1 10465 bernneq3 10756 hashfzp1 10918 seq3coll 10936 sumsnf 11576 isprm5 12320 dfphi2 12398 pclemub 12466 pockthg 12536 gsumfzval 13044 logbrec 15206 logbleb 15207 logbgcd1irr 15213 gausslemma2dlem4 15315 |
| Copyright terms: Public domain | W3C validator |