ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelcn Unicode version

Theorem eluzelcn 9733
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
eluzelcn  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )

Proof of Theorem eluzelcn
StepHypRef Expression
1 eluzelre 9732 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
21recnd 8175 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   ` cfv 5318   CCcc 7997   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-neg 8320  df-z 9447  df-uz 9723
This theorem is referenced by:  uzp1  9756  peano2uzr  9780  uzaddcl  9781  eluzgtdifelfzo  10403  rebtwn2zlemstep  10472  fldiv4lem1div2uz2  10526  mulp1mod1  10587  seq3m1  10695  facnn  10949  fac0  10950  fac1  10951  facp1  10952  bcval5  10985  bcn2  10986  swrdfv2  11195  shftuz  11328  seq3shft  11349  climshftlemg  11813  climshft  11815  isumshft  12001  dvdsexp  12372  pclem0  12809  gsumfzconst  13878
  Copyright terms: Public domain W3C validator