ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelcn Unicode version

Theorem eluzelcn 9606
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
eluzelcn  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )

Proof of Theorem eluzelcn
StepHypRef Expression
1 eluzelre 9605 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
21recnd 8050 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   ` cfv 5255   CCcc 7872   ZZ>=cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-neg 8195  df-z 9321  df-uz 9596
This theorem is referenced by:  uzp1  9629  peano2uzr  9653  uzaddcl  9654  eluzgtdifelfzo  10267  rebtwn2zlemstep  10324  fldiv4lem1div2uz2  10378  mulp1mod1  10439  seq3m1  10547  facnn  10801  fac0  10802  fac1  10803  facp1  10804  bcval5  10837  bcn2  10838  shftuz  10964  seq3shft  10985  climshftlemg  11448  climshft  11450  isumshft  11636  dvdsexp  12006  pclem0  12427  gsumfzconst  13414
  Copyright terms: Public domain W3C validator