ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelcn Unicode version

Theorem eluzelcn 9694
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
eluzelcn  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )

Proof of Theorem eluzelcn
StepHypRef Expression
1 eluzelre 9693 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
21recnd 8136 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   ` cfv 5290   CCcc 7958   ZZ>=cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-neg 8281  df-z 9408  df-uz 9684
This theorem is referenced by:  uzp1  9717  peano2uzr  9741  uzaddcl  9742  eluzgtdifelfzo  10363  rebtwn2zlemstep  10432  fldiv4lem1div2uz2  10486  mulp1mod1  10547  seq3m1  10655  facnn  10909  fac0  10910  fac1  10911  facp1  10912  bcval5  10945  bcn2  10946  swrdfv2  11154  shftuz  11243  seq3shft  11264  climshftlemg  11728  climshft  11730  isumshft  11916  dvdsexp  12287  pclem0  12724  gsumfzconst  13792
  Copyright terms: Public domain W3C validator