ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzelcn Unicode version

Theorem eluzelcn 9289
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
eluzelcn  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )

Proof of Theorem eluzelcn
StepHypRef Expression
1 eluzelre 9288 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
21recnd 7758 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   ` cfv 5091   CCcc 7582   ZZ>=cuz 9278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-cnex 7675  ax-resscn 7676
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-ov 5743  df-neg 7900  df-z 9009  df-uz 9279
This theorem is referenced by:  uzp1  9311  peano2uzr  9332  uzaddcl  9333  eluzgtdifelfzo  9925  rebtwn2zlemstep  9981  mulp1mod1  10089  seq3m1  10192  facnn  10424  fac0  10425  fac1  10426  facp1  10427  bcval5  10460  bcn2  10461  shftuz  10540  seq3shft  10561  climshftlemg  11022  climshft  11024  isumshft  11210  dvdsexp  11466
  Copyright terms: Public domain W3C validator