| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzelcn | Unicode version | ||
| Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| eluzelcn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre 9660 |
. 2
| |
| 2 | 1 | recnd 8103 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-neg 8248 df-z 9375 df-uz 9651 |
| This theorem is referenced by: uzp1 9684 peano2uzr 9708 uzaddcl 9709 eluzgtdifelfzo 10328 rebtwn2zlemstep 10397 fldiv4lem1div2uz2 10451 mulp1mod1 10512 seq3m1 10620 facnn 10874 fac0 10875 fac1 10876 facp1 10877 bcval5 10910 bcn2 10911 swrdfv2 11119 shftuz 11161 seq3shft 11182 climshftlemg 11646 climshft 11648 isumshft 11834 dvdsexp 12205 pclem0 12642 gsumfzconst 13710 |
| Copyright terms: Public domain | W3C validator |