ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcl2lemap Unicode version

Theorem expcl2lemap 10760
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
Hypotheses
Ref Expression
expcllem.1  |-  F  C_  CC
expcllem.2  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
expcllem.3  |-  1  e.  F
expcl2lemap.4  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
1  /  x )  e.  F )
Assertion
Ref Expression
expcl2lemap  |-  ( ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Distinct variable groups:    x, y, A   
x, B    x, F, y
Allowed substitution hint:    B( y)

Proof of Theorem expcl2lemap
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 9448 . . 3  |-  ( B  e.  ZZ  <->  ( B  e.  NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) ) )
2 expcllem.1 . . . . . . 7  |-  F  C_  CC
3 expcllem.2 . . . . . . 7  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
4 expcllem.3 . . . . . . 7  |-  1  e.  F
52, 3, 4expcllem 10759 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
65ex 115 . . . . 5  |-  ( A  e.  F  ->  ( B  e.  NN0  ->  ( A ^ B )  e.  F ) )
76adantr 276 . . . 4  |-  ( ( A  e.  F  /\  A #  0 )  ->  ( B  e.  NN0  ->  ( A ^ B )  e.  F ) )
8 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  F )
92, 8sselid 3222 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  CC )
10 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A #  0 )
11 simprl 529 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  RR )
1211recnd 8163 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  CC )
13 nnnn0 9364 . . . . . . . 8  |-  ( -u B  e.  NN  ->  -u B  e.  NN0 )
1413ad2antll 491 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  -u B  e.  NN0 )
15 expineg2 10757 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  -u B  e.  NN0 ) )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
169, 10, 12, 14, 15syl22anc 1272 . . . . . 6  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
17 ssrab2 3309 . . . . . . . 8  |-  { z  e.  F  |  z #  0 }  C_  F
18 simpl 109 . . . . . . . . . 10  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A  e.  F  /\  A #  0 ) )
19 breq1 4085 . . . . . . . . . . 11  |-  ( z  =  A  ->  (
z #  0  <->  A #  0
) )
2019elrab 2959 . . . . . . . . . 10  |-  ( A  e.  { z  e.  F  |  z #  0 }  <->  ( A  e.  F  /\  A #  0 ) )
2118, 20sylibr 134 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  { z  e.  F  |  z #  0 }
)
2217, 2sstri 3233 . . . . . . . . . 10  |-  { z  e.  F  |  z #  0 }  C_  CC
2317sseli 3220 . . . . . . . . . . . 12  |-  ( x  e.  { z  e.  F  |  z #  0 }  ->  x  e.  F )
2417sseli 3220 . . . . . . . . . . . 12  |-  ( y  e.  { z  e.  F  |  z #  0 }  ->  y  e.  F )
2523, 24, 3syl2an 289 . . . . . . . . . . 11  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y )  e.  F
)
26 breq1 4085 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
z #  0  <->  x #  0
) )
2726elrab 2959 . . . . . . . . . . . . 13  |-  ( x  e.  { z  e.  F  |  z #  0 }  <->  ( x  e.  F  /\  x #  0 ) )
282sseli 3220 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  x  e.  CC )
2928anim1i 340 . . . . . . . . . . . . 13  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
x  e.  CC  /\  x #  0 ) )
3027, 29sylbi 121 . . . . . . . . . . . 12  |-  ( x  e.  { z  e.  F  |  z #  0 }  ->  ( x  e.  CC  /\  x #  0 ) )
31 breq1 4085 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
z #  0  <->  y #  0
) )
3231elrab 2959 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e.  F  |  z #  0 }  <->  ( y  e.  F  /\  y #  0 ) )
332sseli 3220 . . . . . . . . . . . . . 14  |-  ( y  e.  F  ->  y  e.  CC )
3433anim1i 340 . . . . . . . . . . . . 13  |-  ( ( y  e.  F  /\  y #  0 )  ->  (
y  e.  CC  /\  y #  0 ) )
3532, 34sylbi 121 . . . . . . . . . . . 12  |-  ( y  e.  { z  e.  F  |  z #  0 }  ->  ( y  e.  CC  /\  y #  0 ) )
36 mulap0 8789 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  x.  y ) #  0 )
3730, 35, 36syl2an 289 . . . . . . . . . . 11  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y ) #  0 )
38 breq1 4085 . . . . . . . . . . . 12  |-  ( z  =  ( x  x.  y )  ->  (
z #  0  <->  ( x  x.  y ) #  0 ) )
3938elrab 2959 . . . . . . . . . . 11  |-  ( ( x  x.  y )  e.  { z  e.  F  |  z #  0 }  <->  ( ( x  x.  y )  e.  F  /\  ( x  x.  y ) #  0 ) )
4025, 37, 39sylanbrc 417 . . . . . . . . . 10  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y )  e.  {
z  e.  F  | 
z #  0 } )
41 1ap0 8725 . . . . . . . . . . 11  |-  1 #  0
42 breq1 4085 . . . . . . . . . . . 12  |-  ( z  =  1  ->  (
z #  0  <->  1 #  0
) )
4342elrab 2959 . . . . . . . . . . 11  |-  ( 1  e.  { z  e.  F  |  z #  0 }  <->  ( 1  e.  F  /\  1 #  0 ) )
444, 41, 43mpbir2an 948 . . . . . . . . . 10  |-  1  e.  { z  e.  F  |  z #  0 }
4522, 40, 44expcllem 10759 . . . . . . . . 9  |-  ( ( A  e.  { z  e.  F  |  z #  0 }  /\  -u B  e.  NN0 )  ->  ( A ^ -u B )  e.  { z  e.  F  |  z #  0 } )
4621, 14, 45syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B )  e.  { z  e.  F  |  z #  0 } )
4717, 46sselid 3222 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B )  e.  F )
48 breq1 4085 . . . . . . . . . 10  |-  ( z  =  ( A ^ -u B )  ->  (
z #  0  <->  ( A ^ -u B ) #  0 ) )
4948elrab 2959 . . . . . . . . 9  |-  ( ( A ^ -u B
)  e.  { z  e.  F  |  z #  0 }  <->  ( ( A ^ -u B )  e.  F  /\  ( A ^ -u B ) #  0 ) )
5046, 49sylib 122 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  (
( A ^ -u B
)  e.  F  /\  ( A ^ -u B
) #  0 ) )
5150simprd 114 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B ) #  0 )
52 breq1 4085 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
x #  0  <->  ( A ^ -u B ) #  0 ) )
53 oveq2 6002 . . . . . . . . . 10  |-  ( x  =  ( A ^ -u B )  ->  (
1  /  x )  =  ( 1  / 
( A ^ -u B
) ) )
5453eleq1d 2298 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
( 1  /  x
)  e.  F  <->  ( 1  /  ( A ^ -u B ) )  e.  F ) )
5552, 54imbi12d 234 . . . . . . . 8  |-  ( x  =  ( A ^ -u B )  ->  (
( x #  0  -> 
( 1  /  x
)  e.  F )  <-> 
( ( A ^ -u B ) #  0  -> 
( 1  /  ( A ^ -u B ) )  e.  F ) ) )
56 expcl2lemap.4 . . . . . . . . 9  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
1  /  x )  e.  F )
5756ex 115 . . . . . . . 8  |-  ( x  e.  F  ->  (
x #  0  ->  (
1  /  x )  e.  F ) )
5855, 57vtoclga 2867 . . . . . . 7  |-  ( ( A ^ -u B
)  e.  F  -> 
( ( A ^ -u B ) #  0  -> 
( 1  /  ( A ^ -u B ) )  e.  F ) )
5947, 51, 58sylc 62 . . . . . 6  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  (
1  /  ( A ^ -u B ) )  e.  F )
6016, 59eqeltrd 2306 . . . . 5  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  e.  F )
6160ex 115 . . . 4  |-  ( ( A  e.  F  /\  A #  0 )  ->  (
( B  e.  RR  /\  -u B  e.  NN )  ->  ( A ^ B )  e.  F
) )
627, 61jaod 722 . . 3  |-  ( ( A  e.  F  /\  A #  0 )  ->  (
( B  e.  NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  e.  F ) )
631, 62biimtrid 152 . 2  |-  ( ( A  e.  F  /\  A #  0 )  ->  ( B  e.  ZZ  ->  ( A ^ B )  e.  F ) )
64633impia 1224 1  |-  ( ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   class class class wbr 4082  (class class class)co 5994   CCcc 7985   RRcr 7986   0cc0 7987   1c1 7988    x. cmul 7992   -ucneg 8306   # cap 8716    / cdiv 8807   NNcn 9098   NN0cn0 9357   ZZcz 9434   ^cexp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-seqfrec 10657  df-exp 10748
This theorem is referenced by:  rpexpcl  10767  reexpclzap  10768  qexpclz  10769  m1expcl2  10770  expclzaplem  10772  1exp  10777
  Copyright terms: Public domain W3C validator