| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcl2lemap | Unicode version | ||
| Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.) |
| Ref | Expression |
|---|---|
| expcllem.1 |
|
| expcllem.2 |
|
| expcllem.3 |
|
| expcl2lemap.4 |
|
| Ref | Expression |
|---|---|
| expcl2lemap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn 9401 |
. . 3
| |
| 2 | expcllem.1 |
. . . . . . 7
| |
| 3 | expcllem.2 |
. . . . . . 7
| |
| 4 | expcllem.3 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | expcllem 10712 |
. . . . . 6
|
| 6 | 5 | ex 115 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simpll 527 |
. . . . . . . 8
| |
| 9 | 2, 8 | sselid 3195 |
. . . . . . 7
|
| 10 | simplr 528 |
. . . . . . 7
| |
| 11 | simprl 529 |
. . . . . . . 8
| |
| 12 | 11 | recnd 8116 |
. . . . . . 7
|
| 13 | nnnn0 9317 |
. . . . . . . 8
| |
| 14 | 13 | ad2antll 491 |
. . . . . . 7
|
| 15 | expineg2 10710 |
. . . . . . 7
| |
| 16 | 9, 10, 12, 14, 15 | syl22anc 1251 |
. . . . . 6
|
| 17 | ssrab2 3282 |
. . . . . . . 8
| |
| 18 | simpl 109 |
. . . . . . . . . 10
| |
| 19 | breq1 4053 |
. . . . . . . . . . 11
| |
| 20 | 19 | elrab 2933 |
. . . . . . . . . 10
|
| 21 | 18, 20 | sylibr 134 |
. . . . . . . . 9
|
| 22 | 17, 2 | sstri 3206 |
. . . . . . . . . 10
|
| 23 | 17 | sseli 3193 |
. . . . . . . . . . . 12
|
| 24 | 17 | sseli 3193 |
. . . . . . . . . . . 12
|
| 25 | 23, 24, 3 | syl2an 289 |
. . . . . . . . . . 11
|
| 26 | breq1 4053 |
. . . . . . . . . . . . . 14
| |
| 27 | 26 | elrab 2933 |
. . . . . . . . . . . . 13
|
| 28 | 2 | sseli 3193 |
. . . . . . . . . . . . . 14
|
| 29 | 28 | anim1i 340 |
. . . . . . . . . . . . 13
|
| 30 | 27, 29 | sylbi 121 |
. . . . . . . . . . . 12
|
| 31 | breq1 4053 |
. . . . . . . . . . . . . 14
| |
| 32 | 31 | elrab 2933 |
. . . . . . . . . . . . 13
|
| 33 | 2 | sseli 3193 |
. . . . . . . . . . . . . 14
|
| 34 | 33 | anim1i 340 |
. . . . . . . . . . . . 13
|
| 35 | 32, 34 | sylbi 121 |
. . . . . . . . . . . 12
|
| 36 | mulap0 8742 |
. . . . . . . . . . . 12
| |
| 37 | 30, 35, 36 | syl2an 289 |
. . . . . . . . . . 11
|
| 38 | breq1 4053 |
. . . . . . . . . . . 12
| |
| 39 | 38 | elrab 2933 |
. . . . . . . . . . 11
|
| 40 | 25, 37, 39 | sylanbrc 417 |
. . . . . . . . . 10
|
| 41 | 1ap0 8678 |
. . . . . . . . . . 11
| |
| 42 | breq1 4053 |
. . . . . . . . . . . 12
| |
| 43 | 42 | elrab 2933 |
. . . . . . . . . . 11
|
| 44 | 4, 41, 43 | mpbir2an 945 |
. . . . . . . . . 10
|
| 45 | 22, 40, 44 | expcllem 10712 |
. . . . . . . . 9
|
| 46 | 21, 14, 45 | syl2anc 411 |
. . . . . . . 8
|
| 47 | 17, 46 | sselid 3195 |
. . . . . . 7
|
| 48 | breq1 4053 |
. . . . . . . . . 10
| |
| 49 | 48 | elrab 2933 |
. . . . . . . . 9
|
| 50 | 46, 49 | sylib 122 |
. . . . . . . 8
|
| 51 | 50 | simprd 114 |
. . . . . . 7
|
| 52 | breq1 4053 |
. . . . . . . . 9
| |
| 53 | oveq2 5964 |
. . . . . . . . . 10
| |
| 54 | 53 | eleq1d 2275 |
. . . . . . . . 9
|
| 55 | 52, 54 | imbi12d 234 |
. . . . . . . 8
|
| 56 | expcl2lemap.4 |
. . . . . . . . 9
| |
| 57 | 56 | ex 115 |
. . . . . . . 8
|
| 58 | 55, 57 | vtoclga 2841 |
. . . . . . 7
|
| 59 | 47, 51, 58 | sylc 62 |
. . . . . 6
|
| 60 | 16, 59 | eqeltrd 2283 |
. . . . 5
|
| 61 | 60 | ex 115 |
. . . 4
|
| 62 | 7, 61 | jaod 719 |
. . 3
|
| 63 | 1, 62 | biimtrid 152 |
. 2
|
| 64 | 63 | 3impia 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-n0 9311 df-z 9388 df-uz 9664 df-seqfrec 10610 df-exp 10701 |
| This theorem is referenced by: rpexpcl 10720 reexpclzap 10721 qexpclz 10722 m1expcl2 10723 expclzaplem 10725 1exp 10730 |
| Copyright terms: Public domain | W3C validator |