ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcl2lemap Unicode version

Theorem expcl2lemap 10545
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
Hypotheses
Ref Expression
expcllem.1  |-  F  C_  CC
expcllem.2  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
expcllem.3  |-  1  e.  F
expcl2lemap.4  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
1  /  x )  e.  F )
Assertion
Ref Expression
expcl2lemap  |-  ( ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Distinct variable groups:    x, y, A   
x, B    x, F, y
Allowed substitution hint:    B( y)

Proof of Theorem expcl2lemap
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 9280 . . 3  |-  ( B  e.  ZZ  <->  ( B  e.  NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) ) )
2 expcllem.1 . . . . . . 7  |-  F  C_  CC
3 expcllem.2 . . . . . . 7  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
4 expcllem.3 . . . . . . 7  |-  1  e.  F
52, 3, 4expcllem 10544 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
65ex 115 . . . . 5  |-  ( A  e.  F  ->  ( B  e.  NN0  ->  ( A ^ B )  e.  F ) )
76adantr 276 . . . 4  |-  ( ( A  e.  F  /\  A #  0 )  ->  ( B  e.  NN0  ->  ( A ^ B )  e.  F ) )
8 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  F )
92, 8sselid 3165 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  CC )
10 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A #  0 )
11 simprl 529 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  RR )
1211recnd 7999 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  B  e.  CC )
13 nnnn0 9196 . . . . . . . 8  |-  ( -u B  e.  NN  ->  -u B  e.  NN0 )
1413ad2antll 491 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  -u B  e.  NN0 )
15 expineg2 10542 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  -u B  e.  NN0 ) )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
169, 10, 12, 14, 15syl22anc 1249 . . . . . 6  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  =  ( 1  /  ( A ^ -u B ) ) )
17 ssrab2 3252 . . . . . . . 8  |-  { z  e.  F  |  z #  0 }  C_  F
18 simpl 109 . . . . . . . . . 10  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A  e.  F  /\  A #  0 ) )
19 breq1 4018 . . . . . . . . . . 11  |-  ( z  =  A  ->  (
z #  0  <->  A #  0
) )
2019elrab 2905 . . . . . . . . . 10  |-  ( A  e.  { z  e.  F  |  z #  0 }  <->  ( A  e.  F  /\  A #  0 ) )
2118, 20sylibr 134 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  A  e.  { z  e.  F  |  z #  0 }
)
2217, 2sstri 3176 . . . . . . . . . 10  |-  { z  e.  F  |  z #  0 }  C_  CC
2317sseli 3163 . . . . . . . . . . . 12  |-  ( x  e.  { z  e.  F  |  z #  0 }  ->  x  e.  F )
2417sseli 3163 . . . . . . . . . . . 12  |-  ( y  e.  { z  e.  F  |  z #  0 }  ->  y  e.  F )
2523, 24, 3syl2an 289 . . . . . . . . . . 11  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y )  e.  F
)
26 breq1 4018 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
z #  0  <->  x #  0
) )
2726elrab 2905 . . . . . . . . . . . . 13  |-  ( x  e.  { z  e.  F  |  z #  0 }  <->  ( x  e.  F  /\  x #  0 ) )
282sseli 3163 . . . . . . . . . . . . . 14  |-  ( x  e.  F  ->  x  e.  CC )
2928anim1i 340 . . . . . . . . . . . . 13  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
x  e.  CC  /\  x #  0 ) )
3027, 29sylbi 121 . . . . . . . . . . . 12  |-  ( x  e.  { z  e.  F  |  z #  0 }  ->  ( x  e.  CC  /\  x #  0 ) )
31 breq1 4018 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
z #  0  <->  y #  0
) )
3231elrab 2905 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e.  F  |  z #  0 }  <->  ( y  e.  F  /\  y #  0 ) )
332sseli 3163 . . . . . . . . . . . . . 14  |-  ( y  e.  F  ->  y  e.  CC )
3433anim1i 340 . . . . . . . . . . . . 13  |-  ( ( y  e.  F  /\  y #  0 )  ->  (
y  e.  CC  /\  y #  0 ) )
3532, 34sylbi 121 . . . . . . . . . . . 12  |-  ( y  e.  { z  e.  F  |  z #  0 }  ->  ( y  e.  CC  /\  y #  0 ) )
36 mulap0 8624 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  x.  y ) #  0 )
3730, 35, 36syl2an 289 . . . . . . . . . . 11  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y ) #  0 )
38 breq1 4018 . . . . . . . . . . . 12  |-  ( z  =  ( x  x.  y )  ->  (
z #  0  <->  ( x  x.  y ) #  0 ) )
3938elrab 2905 . . . . . . . . . . 11  |-  ( ( x  x.  y )  e.  { z  e.  F  |  z #  0 }  <->  ( ( x  x.  y )  e.  F  /\  ( x  x.  y ) #  0 ) )
4025, 37, 39sylanbrc 417 . . . . . . . . . 10  |-  ( ( x  e.  { z  e.  F  |  z #  0 }  /\  y  e.  { z  e.  F  |  z #  0 }
)  ->  ( x  x.  y )  e.  {
z  e.  F  | 
z #  0 } )
41 1ap0 8560 . . . . . . . . . . 11  |-  1 #  0
42 breq1 4018 . . . . . . . . . . . 12  |-  ( z  =  1  ->  (
z #  0  <->  1 #  0
) )
4342elrab 2905 . . . . . . . . . . 11  |-  ( 1  e.  { z  e.  F  |  z #  0 }  <->  ( 1  e.  F  /\  1 #  0 ) )
444, 41, 43mpbir2an 943 . . . . . . . . . 10  |-  1  e.  { z  e.  F  |  z #  0 }
4522, 40, 44expcllem 10544 . . . . . . . . 9  |-  ( ( A  e.  { z  e.  F  |  z #  0 }  /\  -u B  e.  NN0 )  ->  ( A ^ -u B )  e.  { z  e.  F  |  z #  0 } )
4621, 14, 45syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B )  e.  { z  e.  F  |  z #  0 } )
4717, 46sselid 3165 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B )  e.  F )
48 breq1 4018 . . . . . . . . . 10  |-  ( z  =  ( A ^ -u B )  ->  (
z #  0  <->  ( A ^ -u B ) #  0 ) )
4948elrab 2905 . . . . . . . . 9  |-  ( ( A ^ -u B
)  e.  { z  e.  F  |  z #  0 }  <->  ( ( A ^ -u B )  e.  F  /\  ( A ^ -u B ) #  0 ) )
5046, 49sylib 122 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  (
( A ^ -u B
)  e.  F  /\  ( A ^ -u B
) #  0 ) )
5150simprd 114 . . . . . . 7  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ -u B ) #  0 )
52 breq1 4018 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
x #  0  <->  ( A ^ -u B ) #  0 ) )
53 oveq2 5896 . . . . . . . . . 10  |-  ( x  =  ( A ^ -u B )  ->  (
1  /  x )  =  ( 1  / 
( A ^ -u B
) ) )
5453eleq1d 2256 . . . . . . . . 9  |-  ( x  =  ( A ^ -u B )  ->  (
( 1  /  x
)  e.  F  <->  ( 1  /  ( A ^ -u B ) )  e.  F ) )
5552, 54imbi12d 234 . . . . . . . 8  |-  ( x  =  ( A ^ -u B )  ->  (
( x #  0  -> 
( 1  /  x
)  e.  F )  <-> 
( ( A ^ -u B ) #  0  -> 
( 1  /  ( A ^ -u B ) )  e.  F ) ) )
56 expcl2lemap.4 . . . . . . . . 9  |-  ( ( x  e.  F  /\  x #  0 )  ->  (
1  /  x )  e.  F )
5756ex 115 . . . . . . . 8  |-  ( x  e.  F  ->  (
x #  0  ->  (
1  /  x )  e.  F ) )
5855, 57vtoclga 2815 . . . . . . 7  |-  ( ( A ^ -u B
)  e.  F  -> 
( ( A ^ -u B ) #  0  -> 
( 1  /  ( A ^ -u B ) )  e.  F ) )
5947, 51, 58sylc 62 . . . . . 6  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  (
1  /  ( A ^ -u B ) )  e.  F )
6016, 59eqeltrd 2264 . . . . 5  |-  ( ( ( A  e.  F  /\  A #  0 )  /\  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  e.  F )
6160ex 115 . . . 4  |-  ( ( A  e.  F  /\  A #  0 )  ->  (
( B  e.  RR  /\  -u B  e.  NN )  ->  ( A ^ B )  e.  F
) )
627, 61jaod 718 . . 3  |-  ( ( A  e.  F  /\  A #  0 )  ->  (
( B  e.  NN0  \/  ( B  e.  RR  /\  -u B  e.  NN ) )  ->  ( A ^ B )  e.  F ) )
631, 62biimtrid 152 . 2  |-  ( ( A  e.  F  /\  A #  0 )  ->  ( B  e.  ZZ  ->  ( A ^ B )  e.  F ) )
64633impia 1201 1  |-  ( ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 979    = wceq 1363    e. wcel 2158   {crab 2469    C_ wss 3141   class class class wbr 4015  (class class class)co 5888   CCcc 7822   RRcr 7823   0cc0 7824   1c1 7825    x. cmul 7829   -ucneg 8142   # cap 8551    / cdiv 8642   NNcn 8932   NN0cn0 9189   ZZcz 9266   ^cexp 10532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-seqfrec 10459  df-exp 10533
This theorem is referenced by:  rpexpcl  10552  reexpclzap  10553  qexpclz  10554  m1expcl2  10555  expclzaplem  10557  1exp  10562
  Copyright terms: Public domain W3C validator