| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcl2lemap | Unicode version | ||
| Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.) |
| Ref | Expression |
|---|---|
| expcllem.1 |
|
| expcllem.2 |
|
| expcllem.3 |
|
| expcl2lemap.4 |
|
| Ref | Expression |
|---|---|
| expcl2lemap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn 9448 |
. . 3
| |
| 2 | expcllem.1 |
. . . . . . 7
| |
| 3 | expcllem.2 |
. . . . . . 7
| |
| 4 | expcllem.3 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | expcllem 10759 |
. . . . . 6
|
| 6 | 5 | ex 115 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simpll 527 |
. . . . . . . 8
| |
| 9 | 2, 8 | sselid 3222 |
. . . . . . 7
|
| 10 | simplr 528 |
. . . . . . 7
| |
| 11 | simprl 529 |
. . . . . . . 8
| |
| 12 | 11 | recnd 8163 |
. . . . . . 7
|
| 13 | nnnn0 9364 |
. . . . . . . 8
| |
| 14 | 13 | ad2antll 491 |
. . . . . . 7
|
| 15 | expineg2 10757 |
. . . . . . 7
| |
| 16 | 9, 10, 12, 14, 15 | syl22anc 1272 |
. . . . . 6
|
| 17 | ssrab2 3309 |
. . . . . . . 8
| |
| 18 | simpl 109 |
. . . . . . . . . 10
| |
| 19 | breq1 4085 |
. . . . . . . . . . 11
| |
| 20 | 19 | elrab 2959 |
. . . . . . . . . 10
|
| 21 | 18, 20 | sylibr 134 |
. . . . . . . . 9
|
| 22 | 17, 2 | sstri 3233 |
. . . . . . . . . 10
|
| 23 | 17 | sseli 3220 |
. . . . . . . . . . . 12
|
| 24 | 17 | sseli 3220 |
. . . . . . . . . . . 12
|
| 25 | 23, 24, 3 | syl2an 289 |
. . . . . . . . . . 11
|
| 26 | breq1 4085 |
. . . . . . . . . . . . . 14
| |
| 27 | 26 | elrab 2959 |
. . . . . . . . . . . . 13
|
| 28 | 2 | sseli 3220 |
. . . . . . . . . . . . . 14
|
| 29 | 28 | anim1i 340 |
. . . . . . . . . . . . 13
|
| 30 | 27, 29 | sylbi 121 |
. . . . . . . . . . . 12
|
| 31 | breq1 4085 |
. . . . . . . . . . . . . 14
| |
| 32 | 31 | elrab 2959 |
. . . . . . . . . . . . 13
|
| 33 | 2 | sseli 3220 |
. . . . . . . . . . . . . 14
|
| 34 | 33 | anim1i 340 |
. . . . . . . . . . . . 13
|
| 35 | 32, 34 | sylbi 121 |
. . . . . . . . . . . 12
|
| 36 | mulap0 8789 |
. . . . . . . . . . . 12
| |
| 37 | 30, 35, 36 | syl2an 289 |
. . . . . . . . . . 11
|
| 38 | breq1 4085 |
. . . . . . . . . . . 12
| |
| 39 | 38 | elrab 2959 |
. . . . . . . . . . 11
|
| 40 | 25, 37, 39 | sylanbrc 417 |
. . . . . . . . . 10
|
| 41 | 1ap0 8725 |
. . . . . . . . . . 11
| |
| 42 | breq1 4085 |
. . . . . . . . . . . 12
| |
| 43 | 42 | elrab 2959 |
. . . . . . . . . . 11
|
| 44 | 4, 41, 43 | mpbir2an 948 |
. . . . . . . . . 10
|
| 45 | 22, 40, 44 | expcllem 10759 |
. . . . . . . . 9
|
| 46 | 21, 14, 45 | syl2anc 411 |
. . . . . . . 8
|
| 47 | 17, 46 | sselid 3222 |
. . . . . . 7
|
| 48 | breq1 4085 |
. . . . . . . . . 10
| |
| 49 | 48 | elrab 2959 |
. . . . . . . . 9
|
| 50 | 46, 49 | sylib 122 |
. . . . . . . 8
|
| 51 | 50 | simprd 114 |
. . . . . . 7
|
| 52 | breq1 4085 |
. . . . . . . . 9
| |
| 53 | oveq2 6002 |
. . . . . . . . . 10
| |
| 54 | 53 | eleq1d 2298 |
. . . . . . . . 9
|
| 55 | 52, 54 | imbi12d 234 |
. . . . . . . 8
|
| 56 | expcl2lemap.4 |
. . . . . . . . 9
| |
| 57 | 56 | ex 115 |
. . . . . . . 8
|
| 58 | 55, 57 | vtoclga 2867 |
. . . . . . 7
|
| 59 | 47, 51, 58 | sylc 62 |
. . . . . 6
|
| 60 | 16, 59 | eqeltrd 2306 |
. . . . 5
|
| 61 | 60 | ex 115 |
. . . 4
|
| 62 | 7, 61 | jaod 722 |
. . 3
|
| 63 | 1, 62 | biimtrid 152 |
. 2
|
| 64 | 63 | 3impia 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-seqfrec 10657 df-exp 10748 |
| This theorem is referenced by: rpexpcl 10767 reexpclzap 10768 qexpclz 10769 m1expcl2 10770 expclzaplem 10772 1exp 10777 |
| Copyright terms: Public domain | W3C validator |