ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absexpzap Unicode version

Theorem absexpzap 11245
Description: Absolute value of integer exponentiation. (Contributed by Jim Kingdon, 11-Aug-2021.)
Assertion
Ref Expression
absexpzap  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) )

Proof of Theorem absexpzap
StepHypRef Expression
1 elznn0nn 9340 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 absexp 11244 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )
32ex 115 . . . . 5  |-  ( A  e.  CC  ->  ( N  e.  NN0  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
43adantr 276 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  ( N  e.  NN0  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
5 1cnd 8042 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  1  e.  CC )
6 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
7 nnnn0 9256 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
87ad2antll 491 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
96, 8expcld 10765 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  e.  CC )
10 simplr 528 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
11 nnz 9345 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
1211ad2antll 491 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
136, 10, 12expap0d 10771 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N ) #  0 )
14 absdivap 11235 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( A ^ -u N
)  e.  CC  /\  ( A ^ -u N
) #  0 )  -> 
( abs `  (
1  /  ( A ^ -u N ) ) )  =  ( ( abs `  1
)  /  ( abs `  ( A ^ -u N
) ) ) )
155, 9, 13, 14syl3anc 1249 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( 1  / 
( A ^ -u N
) ) )  =  ( ( abs `  1
)  /  ( abs `  ( A ^ -u N
) ) ) )
16 abs1 11237 . . . . . . . . 9  |-  ( abs `  1 )  =  1
1716oveq1i 5932 . . . . . . . 8  |-  ( ( abs `  1 )  /  ( abs `  ( A ^ -u N ) ) )  =  ( 1  /  ( abs `  ( A ^ -u N
) ) )
18 absexp 11244 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( abs `  ( A ^ -u N ) )  =  ( ( abs `  A ) ^ -u N ) )
196, 8, 18syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( A ^ -u N ) )  =  ( ( abs `  A
) ^ -u N
) )
2019oveq2d 5938 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( abs `  ( A ^ -u N
) ) )  =  ( 1  /  (
( abs `  A
) ^ -u N
) ) )
2117, 20eqtrid 2241 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( abs `  1
)  /  ( abs `  ( A ^ -u N
) ) )  =  ( 1  /  (
( abs `  A
) ^ -u N
) ) )
2215, 21eqtrd 2229 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( 1  / 
( A ^ -u N
) ) )  =  ( 1  /  (
( abs `  A
) ^ -u N
) ) )
23 simprl 529 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
2423recnd 8055 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
25 expineg2 10640 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
266, 10, 24, 8, 25syl22anc 1250 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
2726fveq2d 5562 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( A ^ N ) )  =  ( abs `  (
1  /  ( A ^ -u N ) ) ) )
28 abscl 11216 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
2928ad2antrr 488 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  A )  e.  RR )
3029recnd 8055 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  A )  e.  CC )
31 abs00ap 11227 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( abs `  A
) #  0  <->  A #  0
) )
3231ad2antrr 488 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( abs `  A
) #  0  <->  A #  0
) )
3310, 32mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  A ) #  0 )
34 expineg2 10640 . . . . . . 7  |-  ( ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A ) #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  -> 
( ( abs `  A
) ^ N )  =  ( 1  / 
( ( abs `  A
) ^ -u N
) ) )
3530, 33, 24, 8, 34syl22anc 1250 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( abs `  A
) ^ N )  =  ( 1  / 
( ( abs `  A
) ^ -u N
) ) )
3622, 27, 353eqtr4d 2239 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) )
3736ex 115 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( N  e.  RR  /\  -u N  e.  NN )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) ) )
384, 37jaod 718 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
39383impia 1202 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )
401, 39syl3an3b 1287 1  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880   -ucneg 8198   # cap 8608    / cdiv 8699   NNcn 8990   NN0cn0 9249   ZZcz 9326   ^cexp 10630   abscabs 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  lgseisen  15315
  Copyright terms: Public domain W3C validator