ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg Unicode version

Theorem mulgneg 13677
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b  |-  B  =  ( Base `  G
)
mulgnncl.t  |-  .x.  =  (.g
`  G )
mulgneg.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulgneg  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 9371 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 simpr 110 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  N  e.  NN )
3 simpl3 1026 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  X  e.  B
)
4 mulgnncl.b . . . . . 6  |-  B  =  ( Base `  G
)
5 mulgnncl.t . . . . . 6  |-  .x.  =  (.g
`  G )
6 mulgneg.i . . . . . 6  |-  I  =  ( invg `  G )
74, 5, 6mulgnegnn 13669 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
82, 3, 7syl2anc 411 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
9 simpl1 1024 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  G  e.  Grp )
10 eqid 2229 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
1110, 6grpinvid 13593 . . . . . 6  |-  ( G  e.  Grp  ->  (
I `  ( 0g `  G ) )  =  ( 0g `  G
) )
129, 11syl 14 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( I `  ( 0g `  G
) )  =  ( 0g `  G ) )
13 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  N  = 
0 )
1413oveq1d 6016 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( N  .x.  X )  =  ( 0  .x.  X ) )
15 simpl3 1026 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  X  e.  B )
164, 10, 5mulg0 13662 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
1715, 16syl 14 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( 0 
.x.  X )  =  ( 0g `  G
) )
1814, 17eqtrd 2262 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( N  .x.  X )  =  ( 0g `  G ) )
1918fveq2d 5631 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( I `  ( N  .x.  X
) )  =  ( I `  ( 0g
`  G ) ) )
2013negeqd 8341 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  -u N  = 
-u 0 )
21 neg0 8392 . . . . . . . 8  |-  -u 0  =  0
2220, 21eqtrdi 2278 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  -u N  =  0 )
2322oveq1d 6016 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( 0  .x.  X ) )
2423, 17eqtrd 2262 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( 0g `  G ) )
2512, 19, 243eqtr4rd 2273 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
268, 25jaodan 802 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
271, 26sylan2b 287 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN0 )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
28 simpl1 1024 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  G  e.  Grp )
29 simprr 531 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
3029nnzd 9568 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
31 simpl3 1026 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  X  e.  B )
324, 5mulgcl 13676 . . . . 5  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
3328, 30, 31, 32syl3anc 1271 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u N  .x.  X )  e.  B )
344, 6grpinvinv 13600 . . . 4  |-  ( ( G  e.  Grp  /\  ( -u N  .x.  X
)  e.  B )  ->  ( I `  ( I `  ( -u N  .x.  X ) ) )  =  (
-u N  .x.  X
) )
3528, 33, 34syl2anc 411 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( I `  ( -u N  .x.  X ) ) )  =  ( -u N  .x.  X ) )
364, 5, 6mulgnegnn 13669 . . . . . 6  |-  ( (
-u N  e.  NN  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
3729, 31, 36syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X
) ) )
38 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
3938recnd 8175 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4039negnegd 8448 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u -u N  =  N )
4140oveq1d 6016 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u -u N  .x.  X )  =  ( N  .x.  X ) )
4237, 41eqtr3d 2264 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( -u N  .x.  X ) )  =  ( N  .x.  X
) )
4342fveq2d 5631 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( I `  ( -u N  .x.  X ) ) )  =  ( I `  ( N  .x.  X ) ) )
4435, 43eqtr3d 2264 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
45 simp2 1022 . . 3  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  N  e.  ZZ )
46 elznn0nn 9460 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4745, 46sylib 122 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4827, 44, 47mpjaodan 803 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   RRcr 7998   0cc0 7999   -ucneg 8318   NNcn 9110   NN0cn0 9369   ZZcz 9446   Basecbs 13032   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulgnegneg  13678  mulgm1  13679  mulgaddcomlem  13682  mulginvcom  13684  mulgz  13687  mulgdirlem  13690  mulgdir  13691  mulgneg2  13693  mulgass  13696  mulgsubdir  13699  ghmmulg  13793  mulgass2  14021
  Copyright terms: Public domain W3C validator