| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgneg | Unicode version | ||
| Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnncl.b |
|
| mulgnncl.t |
|
| mulgneg.i |
|
| Ref | Expression |
|---|---|
| mulgneg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9299 |
. . 3
| |
| 2 | simpr 110 |
. . . . 5
| |
| 3 | simpl3 1005 |
. . . . 5
| |
| 4 | mulgnncl.b |
. . . . . 6
| |
| 5 | mulgnncl.t |
. . . . . 6
| |
| 6 | mulgneg.i |
. . . . . 6
| |
| 7 | 4, 5, 6 | mulgnegnn 13501 |
. . . . 5
|
| 8 | 2, 3, 7 | syl2anc 411 |
. . . 4
|
| 9 | simpl1 1003 |
. . . . . 6
| |
| 10 | eqid 2205 |
. . . . . . 7
| |
| 11 | 10, 6 | grpinvid 13425 |
. . . . . 6
|
| 12 | 9, 11 | syl 14 |
. . . . 5
|
| 13 | simpr 110 |
. . . . . . . 8
| |
| 14 | 13 | oveq1d 5961 |
. . . . . . 7
|
| 15 | simpl3 1005 |
. . . . . . . 8
| |
| 16 | 4, 10, 5 | mulg0 13494 |
. . . . . . . 8
|
| 17 | 15, 16 | syl 14 |
. . . . . . 7
|
| 18 | 14, 17 | eqtrd 2238 |
. . . . . 6
|
| 19 | 18 | fveq2d 5582 |
. . . . 5
|
| 20 | 13 | negeqd 8269 |
. . . . . . . 8
|
| 21 | neg0 8320 |
. . . . . . . 8
| |
| 22 | 20, 21 | eqtrdi 2254 |
. . . . . . 7
|
| 23 | 22 | oveq1d 5961 |
. . . . . 6
|
| 24 | 23, 17 | eqtrd 2238 |
. . . . 5
|
| 25 | 12, 19, 24 | 3eqtr4rd 2249 |
. . . 4
|
| 26 | 8, 25 | jaodan 799 |
. . 3
|
| 27 | 1, 26 | sylan2b 287 |
. 2
|
| 28 | simpl1 1003 |
. . . 4
| |
| 29 | simprr 531 |
. . . . . 6
| |
| 30 | 29 | nnzd 9496 |
. . . . 5
|
| 31 | simpl3 1005 |
. . . . 5
| |
| 32 | 4, 5 | mulgcl 13508 |
. . . . 5
|
| 33 | 28, 30, 31, 32 | syl3anc 1250 |
. . . 4
|
| 34 | 4, 6 | grpinvinv 13432 |
. . . 4
|
| 35 | 28, 33, 34 | syl2anc 411 |
. . 3
|
| 36 | 4, 5, 6 | mulgnegnn 13501 |
. . . . . 6
|
| 37 | 29, 31, 36 | syl2anc 411 |
. . . . 5
|
| 38 | simprl 529 |
. . . . . . . 8
| |
| 39 | 38 | recnd 8103 |
. . . . . . 7
|
| 40 | 39 | negnegd 8376 |
. . . . . 6
|
| 41 | 40 | oveq1d 5961 |
. . . . 5
|
| 42 | 37, 41 | eqtr3d 2240 |
. . . 4
|
| 43 | 42 | fveq2d 5582 |
. . 3
|
| 44 | 35, 43 | eqtr3d 2240 |
. 2
|
| 45 | simp2 1001 |
. . 3
| |
| 46 | elznn0nn 9388 |
. . 3
| |
| 47 | 45, 46 | sylib 122 |
. 2
|
| 48 | 27, 44, 47 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-2 9097 df-n0 9298 df-z 9375 df-uz 9651 df-seqfrec 10595 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-minusg 13369 df-mulg 13489 |
| This theorem is referenced by: mulgnegneg 13510 mulgm1 13511 mulgaddcomlem 13514 mulginvcom 13516 mulgz 13519 mulgdirlem 13522 mulgdir 13523 mulgneg2 13525 mulgass 13528 mulgsubdir 13531 ghmmulg 13625 mulgass2 13853 |
| Copyright terms: Public domain | W3C validator |