| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulgneg | Unicode version | ||
| Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| mulgnncl.b | 
 | 
| mulgnncl.t | 
 | 
| mulgneg.i | 
 | 
| Ref | Expression | 
|---|---|
| mulgneg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnn0 9251 | 
. . 3
 | |
| 2 | simpr 110 | 
. . . . 5
 | |
| 3 | simpl3 1004 | 
. . . . 5
 | |
| 4 | mulgnncl.b | 
. . . . . 6
 | |
| 5 | mulgnncl.t | 
. . . . . 6
 | |
| 6 | mulgneg.i | 
. . . . . 6
 | |
| 7 | 4, 5, 6 | mulgnegnn 13262 | 
. . . . 5
 | 
| 8 | 2, 3, 7 | syl2anc 411 | 
. . . 4
 | 
| 9 | simpl1 1002 | 
. . . . . 6
 | |
| 10 | eqid 2196 | 
. . . . . . 7
 | |
| 11 | 10, 6 | grpinvid 13192 | 
. . . . . 6
 | 
| 12 | 9, 11 | syl 14 | 
. . . . 5
 | 
| 13 | simpr 110 | 
. . . . . . . 8
 | |
| 14 | 13 | oveq1d 5937 | 
. . . . . . 7
 | 
| 15 | simpl3 1004 | 
. . . . . . . 8
 | |
| 16 | 4, 10, 5 | mulg0 13255 | 
. . . . . . . 8
 | 
| 17 | 15, 16 | syl 14 | 
. . . . . . 7
 | 
| 18 | 14, 17 | eqtrd 2229 | 
. . . . . 6
 | 
| 19 | 18 | fveq2d 5562 | 
. . . . 5
 | 
| 20 | 13 | negeqd 8221 | 
. . . . . . . 8
 | 
| 21 | neg0 8272 | 
. . . . . . . 8
 | |
| 22 | 20, 21 | eqtrdi 2245 | 
. . . . . . 7
 | 
| 23 | 22 | oveq1d 5937 | 
. . . . . 6
 | 
| 24 | 23, 17 | eqtrd 2229 | 
. . . . 5
 | 
| 25 | 12, 19, 24 | 3eqtr4rd 2240 | 
. . . 4
 | 
| 26 | 8, 25 | jaodan 798 | 
. . 3
 | 
| 27 | 1, 26 | sylan2b 287 | 
. 2
 | 
| 28 | simpl1 1002 | 
. . . 4
 | |
| 29 | simprr 531 | 
. . . . . 6
 | |
| 30 | 29 | nnzd 9447 | 
. . . . 5
 | 
| 31 | simpl3 1004 | 
. . . . 5
 | |
| 32 | 4, 5 | mulgcl 13269 | 
. . . . 5
 | 
| 33 | 28, 30, 31, 32 | syl3anc 1249 | 
. . . 4
 | 
| 34 | 4, 6 | grpinvinv 13199 | 
. . . 4
 | 
| 35 | 28, 33, 34 | syl2anc 411 | 
. . 3
 | 
| 36 | 4, 5, 6 | mulgnegnn 13262 | 
. . . . . 6
 | 
| 37 | 29, 31, 36 | syl2anc 411 | 
. . . . 5
 | 
| 38 | simprl 529 | 
. . . . . . . 8
 | |
| 39 | 38 | recnd 8055 | 
. . . . . . 7
 | 
| 40 | 39 | negnegd 8328 | 
. . . . . 6
 | 
| 41 | 40 | oveq1d 5937 | 
. . . . 5
 | 
| 42 | 37, 41 | eqtr3d 2231 | 
. . . 4
 | 
| 43 | 42 | fveq2d 5562 | 
. . 3
 | 
| 44 | 35, 43 | eqtr3d 2231 | 
. 2
 | 
| 45 | simp2 1000 | 
. . 3
 | |
| 46 | elznn0nn 9340 | 
. . 3
 | |
| 47 | 45, 46 | sylib 122 | 
. 2
 | 
| 48 | 27, 44, 47 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-mulg 13250 | 
| This theorem is referenced by: mulgnegneg 13271 mulgm1 13272 mulgaddcomlem 13275 mulginvcom 13277 mulgz 13280 mulgdirlem 13283 mulgdir 13284 mulgneg2 13286 mulgass 13289 mulgsubdir 13292 ghmmulg 13386 mulgass2 13614 | 
| Copyright terms: Public domain | W3C validator |