ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg Unicode version

Theorem mulgneg 13476
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b  |-  B  =  ( Base `  G
)
mulgnncl.t  |-  .x.  =  (.g
`  G )
mulgneg.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulgneg  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 9297 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 simpr 110 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  N  e.  NN )
3 simpl3 1005 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  X  e.  B
)
4 mulgnncl.b . . . . . 6  |-  B  =  ( Base `  G
)
5 mulgnncl.t . . . . . 6  |-  .x.  =  (.g
`  G )
6 mulgneg.i . . . . . 6  |-  I  =  ( invg `  G )
74, 5, 6mulgnegnn 13468 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
82, 3, 7syl2anc 411 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
9 simpl1 1003 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  G  e.  Grp )
10 eqid 2205 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
1110, 6grpinvid 13392 . . . . . 6  |-  ( G  e.  Grp  ->  (
I `  ( 0g `  G ) )  =  ( 0g `  G
) )
129, 11syl 14 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( I `  ( 0g `  G
) )  =  ( 0g `  G ) )
13 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  N  = 
0 )
1413oveq1d 5959 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( N  .x.  X )  =  ( 0  .x.  X ) )
15 simpl3 1005 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  X  e.  B )
164, 10, 5mulg0 13461 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
1715, 16syl 14 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( 0 
.x.  X )  =  ( 0g `  G
) )
1814, 17eqtrd 2238 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( N  .x.  X )  =  ( 0g `  G ) )
1918fveq2d 5580 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( I `  ( N  .x.  X
) )  =  ( I `  ( 0g
`  G ) ) )
2013negeqd 8267 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  -u N  = 
-u 0 )
21 neg0 8318 . . . . . . . 8  |-  -u 0  =  0
2220, 21eqtrdi 2254 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  -u N  =  0 )
2322oveq1d 5959 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( 0  .x.  X ) )
2423, 17eqtrd 2238 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( 0g `  G ) )
2512, 19, 243eqtr4rd 2249 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
268, 25jaodan 799 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
271, 26sylan2b 287 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN0 )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
28 simpl1 1003 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  G  e.  Grp )
29 simprr 531 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
3029nnzd 9494 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
31 simpl3 1005 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  X  e.  B )
324, 5mulgcl 13475 . . . . 5  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
3328, 30, 31, 32syl3anc 1250 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u N  .x.  X )  e.  B )
344, 6grpinvinv 13399 . . . 4  |-  ( ( G  e.  Grp  /\  ( -u N  .x.  X
)  e.  B )  ->  ( I `  ( I `  ( -u N  .x.  X ) ) )  =  (
-u N  .x.  X
) )
3528, 33, 34syl2anc 411 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( I `  ( -u N  .x.  X ) ) )  =  ( -u N  .x.  X ) )
364, 5, 6mulgnegnn 13468 . . . . . 6  |-  ( (
-u N  e.  NN  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
3729, 31, 36syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X
) ) )
38 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
3938recnd 8101 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4039negnegd 8374 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u -u N  =  N )
4140oveq1d 5959 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u -u N  .x.  X )  =  ( N  .x.  X ) )
4237, 41eqtr3d 2240 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( -u N  .x.  X ) )  =  ( N  .x.  X
) )
4342fveq2d 5580 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( I `  ( -u N  .x.  X ) ) )  =  ( I `  ( N  .x.  X ) ) )
4435, 43eqtr3d 2240 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
45 simp2 1001 . . 3  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  N  e.  ZZ )
46 elznn0nn 9386 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4745, 46sylib 122 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4827, 44, 47mpjaodan 800 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925   -ucneg 8244   NNcn 9036   NN0cn0 9295   ZZcz 9372   Basecbs 12832   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333  .gcmg 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-mulg 13456
This theorem is referenced by:  mulgnegneg  13477  mulgm1  13478  mulgaddcomlem  13481  mulginvcom  13483  mulgz  13486  mulgdirlem  13489  mulgdir  13490  mulgneg2  13492  mulgass  13495  mulgsubdir  13498  ghmmulg  13592  mulgass2  13820
  Copyright terms: Public domain W3C validator