ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg Unicode version

Theorem mulgneg 13210
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b  |-  B  =  ( Base `  G
)
mulgnncl.t  |-  .x.  =  (.g
`  G )
mulgneg.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulgneg  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )

Proof of Theorem mulgneg
StepHypRef Expression
1 elnn0 9242 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 simpr 110 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  N  e.  NN )
3 simpl3 1004 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  X  e.  B
)
4 mulgnncl.b . . . . . 6  |-  B  =  ( Base `  G
)
5 mulgnncl.t . . . . . 6  |-  .x.  =  (.g
`  G )
6 mulgneg.i . . . . . 6  |-  I  =  ( invg `  G )
74, 5, 6mulgnegnn 13202 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
82, 3, 7syl2anc 411 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
9 simpl1 1002 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  G  e.  Grp )
10 eqid 2193 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
1110, 6grpinvid 13132 . . . . . 6  |-  ( G  e.  Grp  ->  (
I `  ( 0g `  G ) )  =  ( 0g `  G
) )
129, 11syl 14 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( I `  ( 0g `  G
) )  =  ( 0g `  G ) )
13 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  N  = 
0 )
1413oveq1d 5933 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( N  .x.  X )  =  ( 0  .x.  X ) )
15 simpl3 1004 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  X  e.  B )
164, 10, 5mulg0 13195 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
1715, 16syl 14 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( 0 
.x.  X )  =  ( 0g `  G
) )
1814, 17eqtrd 2226 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( N  .x.  X )  =  ( 0g `  G ) )
1918fveq2d 5558 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( I `  ( N  .x.  X
) )  =  ( I `  ( 0g
`  G ) ) )
2013negeqd 8214 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  -u N  = 
-u 0 )
21 neg0 8265 . . . . . . . 8  |-  -u 0  =  0
2220, 21eqtrdi 2242 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  -u N  =  0 )
2322oveq1d 5933 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( 0  .x.  X ) )
2423, 17eqtrd 2226 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( 0g `  G ) )
2512, 19, 243eqtr4rd 2237 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  =  0
)  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
268, 25jaodan 798 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
271, 26sylan2b 287 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN0 )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
28 simpl1 1002 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  G  e.  Grp )
29 simprr 531 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
3029nnzd 9438 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
31 simpl3 1004 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  X  e.  B )
324, 5mulgcl 13209 . . . . 5  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
3328, 30, 31, 32syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u N  .x.  X )  e.  B )
344, 6grpinvinv 13139 . . . 4  |-  ( ( G  e.  Grp  /\  ( -u N  .x.  X
)  e.  B )  ->  ( I `  ( I `  ( -u N  .x.  X ) ) )  =  (
-u N  .x.  X
) )
3528, 33, 34syl2anc 411 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( I `  ( -u N  .x.  X ) ) )  =  ( -u N  .x.  X ) )
364, 5, 6mulgnegnn 13202 . . . . . 6  |-  ( (
-u N  e.  NN  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X ) ) )
3729, 31, 36syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u -u N  .x.  X )  =  ( I `  ( -u N  .x.  X
) ) )
38 simprl 529 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
3938recnd 8048 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4039negnegd 8321 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u -u N  =  N )
4140oveq1d 5933 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u -u N  .x.  X )  =  ( N  .x.  X ) )
4237, 41eqtr3d 2228 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( -u N  .x.  X ) )  =  ( N  .x.  X
) )
4342fveq2d 5558 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
I `  ( I `  ( -u N  .x.  X ) ) )  =  ( I `  ( N  .x.  X ) ) )
4435, 43eqtr3d 2228 . 2  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
45 simp2 1000 . . 3  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  N  e.  ZZ )
46 elznn0nn 9331 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4745, 46sylib 122 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
4827, 44, 47mpjaodan 799 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   -ucneg 8191   NNcn 8982   NN0cn0 9240   ZZcz 9317   Basecbs 12618   0gc0g 12867   Grpcgrp 13072   invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgnegneg  13211  mulgm1  13212  mulgaddcomlem  13215  mulginvcom  13217  mulgz  13220  mulgdirlem  13223  mulgdir  13224  mulgneg2  13226  mulgass  13229  mulgsubdir  13232  ghmmulg  13326  mulgass2  13554
  Copyright terms: Public domain W3C validator