| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en1eqsn | GIF version | ||
| Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) |
| Ref | Expression |
|---|---|
| en1eqsn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6629 | . . . . . 6 ⊢ 1o ∈ ω | |
| 2 | nnfi 6995 | . . . . . 6 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ Fin |
| 4 | enfii 6997 | . . . . 5 ⊢ ((1o ∈ Fin ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin) | |
| 5 | 3, 4 | mpan 424 | . . . 4 ⊢ (𝐵 ≈ 1o → 𝐵 ∈ Fin) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin) |
| 7 | snssi 3788 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
| 8 | 7 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} ⊆ 𝐵) |
| 9 | ensn1g 6912 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ≈ 1o) | |
| 10 | ensym 6896 | . . . 4 ⊢ (𝐵 ≈ 1o → 1o ≈ 𝐵) | |
| 11 | entr 6899 | . . . 4 ⊢ (({𝐴} ≈ 1o ∧ 1o ≈ 𝐵) → {𝐴} ≈ 𝐵) | |
| 12 | 9, 10, 11 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} ≈ 𝐵) |
| 13 | fisseneq 7057 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ {𝐴} ⊆ 𝐵 ∧ {𝐴} ≈ 𝐵) → {𝐴} = 𝐵) | |
| 14 | 6, 8, 12, 13 | syl3anc 1250 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} = 𝐵) |
| 15 | 14 | eqcomd 2213 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 {csn 3643 class class class wbr 4059 ωcom 4656 1oc1o 6518 ≈ cen 6848 Fincfn 6850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1o 6525 df-er 6643 df-en 6851 df-fin 6853 |
| This theorem is referenced by: en1eqsnbi 7077 1nsgtrivd 13670 en1top 14664 |
| Copyright terms: Public domain | W3C validator |