ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1eqsn GIF version

Theorem en1eqsn 7076
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
Assertion
Ref Expression
en1eqsn ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})

Proof of Theorem en1eqsn
StepHypRef Expression
1 1onn 6629 . . . . . 6 1o ∈ ω
2 nnfi 6995 . . . . . 6 (1o ∈ ω → 1o ∈ Fin)
31, 2ax-mp 5 . . . . 5 1o ∈ Fin
4 enfii 6997 . . . . 5 ((1o ∈ Fin ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin)
53, 4mpan 424 . . . 4 (𝐵 ≈ 1o𝐵 ∈ Fin)
65adantl 277 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 ∈ Fin)
7 snssi 3788 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
87adantr 276 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} ⊆ 𝐵)
9 ensn1g 6912 . . . 4 (𝐴𝐵 → {𝐴} ≈ 1o)
10 ensym 6896 . . . 4 (𝐵 ≈ 1o → 1o𝐵)
11 entr 6899 . . . 4 (({𝐴} ≈ 1o ∧ 1o𝐵) → {𝐴} ≈ 𝐵)
129, 10, 11syl2an 289 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} ≈ 𝐵)
13 fisseneq 7057 . . 3 ((𝐵 ∈ Fin ∧ {𝐴} ⊆ 𝐵 ∧ {𝐴} ≈ 𝐵) → {𝐴} = 𝐵)
146, 8, 12, 13syl3anc 1250 . 2 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} = 𝐵)
1514eqcomd 2213 1 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wss 3174  {csn 3643   class class class wbr 4059  ωcom 4656  1oc1o 6518  cen 6848  Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  en1eqsnbi  7077  1nsgtrivd  13670  en1top  14664
  Copyright terms: Public domain W3C validator