ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcompig Unicode version

Theorem mulcompig 7107
Description: Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
mulcompig  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( B  .N  A ) )

Proof of Theorem mulcompig
StepHypRef Expression
1 pinn 7085 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 7085 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 nnmcom 6353 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( B  .o  A ) )
41, 2, 3syl2an 287 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  B
)  =  ( B  .o  A ) )
5 mulpiord 7093 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
6 mulpiord 7093 . . 3  |-  ( ( B  e.  N.  /\  A  e.  N. )  ->  ( B  .N  A
)  =  ( B  .o  A ) )
76ancoms 266 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  .N  A
)  =  ( B  .o  A ) )
84, 5, 73eqtr4d 2160 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( B  .N  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   omcom 4474  (class class class)co 5742    .o comu 6279   N.cnpi 7048    .N cmi 7050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-oadd 6285  df-omul 6286  df-ni 7080  df-mi 7082
This theorem is referenced by:  dfplpq2  7130  enqbreq2  7133  enqer  7134  addcmpblnq  7143  mulcmpblnq  7144  ordpipqqs  7150  addcomnqg  7157  addassnqg  7158  mulcomnqg  7159  mulcanenq  7161  distrnqg  7163  mulidnq  7165  recexnq  7166  nqtri3or  7172  ltsonq  7174  ltanqg  7176  ltmnqg  7177  ltexnqq  7184  archnqq  7193  prarloclemarch2  7195  ltnnnq  7199  prarloclemlt  7269
  Copyright terms: Public domain W3C validator