ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcompig Unicode version

Theorem mulcompig 7459
Description: Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
mulcompig  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( B  .N  A ) )

Proof of Theorem mulcompig
StepHypRef Expression
1 pinn 7437 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 7437 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 nnmcom 6587 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( B  .o  A ) )
41, 2, 3syl2an 289 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  B
)  =  ( B  .o  A ) )
5 mulpiord 7445 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
6 mulpiord 7445 . . 3  |-  ( ( B  e.  N.  /\  A  e.  N. )  ->  ( B  .N  A
)  =  ( B  .o  A ) )
76ancoms 268 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  .N  A
)  =  ( B  .o  A ) )
84, 5, 73eqtr4d 2249 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( B  .N  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   omcom 4645  (class class class)co 5956    .o comu 6512   N.cnpi 7400    .N cmi 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-irdg 6468  df-oadd 6518  df-omul 6519  df-ni 7432  df-mi 7434
This theorem is referenced by:  dfplpq2  7482  enqbreq2  7485  enqer  7486  addcmpblnq  7495  mulcmpblnq  7496  ordpipqqs  7502  addcomnqg  7509  addassnqg  7510  mulcomnqg  7511  mulcanenq  7513  distrnqg  7515  mulidnq  7517  recexnq  7518  nqtri3or  7524  ltsonq  7526  ltanqg  7528  ltmnqg  7529  ltexnqq  7536  archnqq  7545  prarloclemarch2  7547  ltnnnq  7551  prarloclemlt  7621
  Copyright terms: Public domain W3C validator