| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcompig | Unicode version | ||
| Description: Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
| Ref | Expression |
|---|---|
| mulcompig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7484 |
. . 3
| |
| 2 | pinn 7484 |
. . 3
| |
| 3 | nnmcom 6625 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | mulpiord 7492 |
. 2
| |
| 6 | mulpiord 7492 |
. . 3
| |
| 7 | 6 | ancoms 268 |
. 2
|
| 8 | 4, 5, 7 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-oadd 6556 df-omul 6557 df-ni 7479 df-mi 7481 |
| This theorem is referenced by: dfplpq2 7529 enqbreq2 7532 enqer 7533 addcmpblnq 7542 mulcmpblnq 7543 ordpipqqs 7549 addcomnqg 7556 addassnqg 7557 mulcomnqg 7558 mulcanenq 7560 distrnqg 7562 mulidnq 7564 recexnq 7565 nqtri3or 7571 ltsonq 7573 ltanqg 7575 ltmnqg 7576 ltexnqq 7583 archnqq 7592 prarloclemarch2 7594 ltnnnq 7598 prarloclemlt 7668 |
| Copyright terms: Public domain | W3C validator |