| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcompig | Unicode version | ||
| Description: Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.) |
| Ref | Expression |
|---|---|
| mulcompig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7437 |
. . 3
| |
| 2 | pinn 7437 |
. . 3
| |
| 3 | nnmcom 6587 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | mulpiord 7445 |
. 2
| |
| 6 | mulpiord 7445 |
. . 3
| |
| 7 | 6 | ancoms 268 |
. 2
|
| 8 | 4, 5, 7 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-oadd 6518 df-omul 6519 df-ni 7432 df-mi 7434 |
| This theorem is referenced by: dfplpq2 7482 enqbreq2 7485 enqer 7486 addcmpblnq 7495 mulcmpblnq 7496 ordpipqqs 7502 addcomnqg 7509 addassnqg 7510 mulcomnqg 7511 mulcanenq 7513 distrnqg 7515 mulidnq 7517 recexnq 7518 nqtri3or 7524 ltsonq 7526 ltanqg 7528 ltmnqg 7529 ltexnqq 7536 archnqq 7545 prarloclemarch2 7547 ltnnnq 7551 prarloclemlt 7621 |
| Copyright terms: Public domain | W3C validator |