ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensym GIF version

Theorem ensym 6756
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensym (𝐴𝐵𝐵𝐴)

Proof of Theorem ensym
StepHypRef Expression
1 ensymb 6755 . 2 (𝐴𝐵𝐵𝐴)
21biimpi 119 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 3987  cen 6713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-er 6510  df-en 6716
This theorem is referenced by:  ensymi  6757  ensymd  6758  enen1  6815  enen2  6816  domen1  6817  domen2  6818  nneneq  6832  ssfilem  6850  diffitest  6862  fiintim  6903  fisseneq  6906  en1eqsn  6922  fidcenumlemim  6926  enomni  7112  enmkv  7135  enwomni  7143  finnum  7149  pr2ne  7158  djucomen  7182  cc2lem  7217  enct  12377
  Copyright terms: Public domain W3C validator