ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensym GIF version

Theorem ensym 6627
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensym (𝐴𝐵𝐵𝐴)

Proof of Theorem ensym
StepHypRef Expression
1 ensymb 6626 . 2 (𝐴𝐵𝐵𝐴)
21biimpi 119 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 3893  cen 6584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-er 6381  df-en 6587
This theorem is referenced by:  ensymi  6628  ensymd  6629  enen1  6685  enen2  6686  domen1  6687  domen2  6688  nneneq  6702  ssfilem  6720  diffitest  6732  fiintim  6768  fisseneq  6771  en1eqsn  6786  fidcenumlemim  6790  enomni  6959  finnum  6986  pr2ne  6995  djucomen  7017
  Copyright terms: Public domain W3C validator