ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensym GIF version

Theorem ensym 6903
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensym (𝐴𝐵𝐵𝐴)

Proof of Theorem ensym
StepHypRef Expression
1 ensymb 6902 . 2 (𝐴𝐵𝐵𝐴)
21biimpi 120 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 4062  cen 6855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-er 6650  df-en 6858
This theorem is referenced by:  ensymi  6904  ensymd  6905  enen1  6969  enen2  6970  domen1  6971  domen2  6972  nneneq  6986  ssfilem  7005  diffitest  7017  fiintim  7061  fisseneq  7064  en1eqsn  7083  fidcenumlemim  7087  enomni  7274  enmkv  7297  enwomni  7305  finnum  7323  pr2ne  7333  pr2cv1  7336  djucomen  7366  cc2lem  7420  enct  12970  usgrislfuspgrdom  15953
  Copyright terms: Public domain W3C validator