ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensym GIF version

Theorem ensym 6880
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensym (𝐴𝐵𝐵𝐴)

Proof of Theorem ensym
StepHypRef Expression
1 ensymb 6879 . 2 (𝐴𝐵𝐵𝐴)
21biimpi 120 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 4047  cen 6832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-er 6627  df-en 6835
This theorem is referenced by:  ensymi  6881  ensymd  6882  enen1  6944  enen2  6945  domen1  6946  domen2  6947  nneneq  6961  ssfilem  6979  diffitest  6991  fiintim  7035  fisseneq  7038  en1eqsn  7057  fidcenumlemim  7061  enomni  7248  enmkv  7271  enwomni  7279  finnum  7297  pr2ne  7307  djucomen  7335  cc2lem  7385  enct  12848
  Copyright terms: Public domain W3C validator