ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemupu Unicode version

Theorem recexprlemupu 7630
Description: The upper cut of  B is upper. Lemma for recexpr 7640. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemupu  |-  ( ( A  e.  P.  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) )  ->  r  e.  ( 2nd `  B ) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemupu
StepHypRef Expression
1 ltsonq 7400 . . . . . . . . 9  |-  <Q  Or  Q.
2 ltrelnq 7367 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
31, 2sotri 5026 . . . . . . . 8  |-  ( ( y  <Q  q  /\  q  <Q  r )  -> 
y  <Q  r )
43expcom 116 . . . . . . 7  |-  ( q 
<Q  r  ->  ( y 
<Q  q  ->  y  <Q 
r ) )
54anim1d 336 . . . . . 6  |-  ( q 
<Q  r  ->  ( ( y  <Q  q  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  (
y  <Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
65eximdv 1880 . . . . 5  |-  ( q 
<Q  r  ->  ( E. y ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
7 recexpr.1 . . . . . 6  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
87recexprlemelu 7625 . . . . 5  |-  ( q  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  q  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
97recexprlemelu 7625 . . . . 5  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
106, 8, 93imtr4g 205 . . . 4  |-  ( q 
<Q  r  ->  ( q  e.  ( 2nd `  B
)  ->  r  e.  ( 2nd `  B ) ) )
1110imp 124 . . 3  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  B ) )  -> 
r  e.  ( 2nd `  B ) )
1211rexlimivw 2590 . 2  |-  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) )  ->  r  e.  ( 2nd `  B
) )
1312a1i 9 1  |-  ( ( A  e.  P.  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) )  ->  r  e.  ( 2nd `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   E.wrex 2456   <.cop 3597   class class class wbr 4005   ` cfv 5218   1stc1st 6142   2ndc2nd 6143   Q.cnq 7282   *Qcrq 7286    <Q cltq 7287   P.cnp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-mi 7308  df-lti 7309  df-enq 7349  df-nqqs 7350  df-ltnqqs 7355
This theorem is referenced by:  recexprlemrnd  7631
  Copyright terms: Public domain W3C validator