ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemupu Unicode version

Theorem recexprlemupu 7569
Description: The upper cut of  B is upper. Lemma for recexpr 7579. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemupu  |-  ( ( A  e.  P.  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) )  ->  r  e.  ( 2nd `  B ) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemupu
StepHypRef Expression
1 ltsonq 7339 . . . . . . . . 9  |-  <Q  Or  Q.
2 ltrelnq 7306 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
31, 2sotri 4999 . . . . . . . 8  |-  ( ( y  <Q  q  /\  q  <Q  r )  -> 
y  <Q  r )
43expcom 115 . . . . . . 7  |-  ( q 
<Q  r  ->  ( y 
<Q  q  ->  y  <Q 
r ) )
54anim1d 334 . . . . . 6  |-  ( q 
<Q  r  ->  ( ( y  <Q  q  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  (
y  <Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
65eximdv 1868 . . . . 5  |-  ( q 
<Q  r  ->  ( E. y ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
7 recexpr.1 . . . . . 6  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
87recexprlemelu 7564 . . . . 5  |-  ( q  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  q  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
97recexprlemelu 7564 . . . . 5  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
106, 8, 93imtr4g 204 . . . 4  |-  ( q 
<Q  r  ->  ( q  e.  ( 2nd `  B
)  ->  r  e.  ( 2nd `  B ) ) )
1110imp 123 . . 3  |-  ( ( q  <Q  r  /\  q  e.  ( 2nd `  B ) )  -> 
r  e.  ( 2nd `  B ) )
1211rexlimivw 2579 . 2  |-  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) )  ->  r  e.  ( 2nd `  B
) )
1312a1i 9 1  |-  ( ( A  e.  P.  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) )  ->  r  e.  ( 2nd `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   E.wrex 2445   <.cop 3579   class class class wbr 3982   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221   *Qcrq 7225    <Q cltq 7226   P.cnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-lti 7248  df-enq 7288  df-nqqs 7289  df-ltnqqs 7294
This theorem is referenced by:  recexprlemrnd  7570
  Copyright terms: Public domain W3C validator