ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemlol Unicode version

Theorem recexprlemlol 7656
Description: The lower cut of  B is lower. Lemma for recexpr 7668. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemlol  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  ( E. r  e. 
Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  B ) )  ->  q  e.  ( 1st `  B ) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemlol
StepHypRef Expression
1 ltsonq 7428 . . . . . . . . 9  |-  <Q  Or  Q.
2 ltrelnq 7395 . . . . . . . . 9  |-  <Q  C_  ( Q.  X.  Q. )
31, 2sotri 5042 . . . . . . . 8  |-  ( ( q  <Q  r  /\  r  <Q  y )  -> 
q  <Q  y )
43ex 115 . . . . . . 7  |-  ( q 
<Q  r  ->  ( r 
<Q  y  ->  q  <Q 
y ) )
54anim1d 336 . . . . . 6  |-  ( q 
<Q  r  ->  ( ( r  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  (
q  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) ) )
65eximdv 1891 . . . . 5  |-  ( q 
<Q  r  ->  ( E. y ( r  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
7 recexpr.1 . . . . . 6  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
87recexprlemell 7652 . . . . 5  |-  ( r  e.  ( 1st `  B
)  <->  E. y ( r 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
97recexprlemell 7652 . . . . 5  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
106, 8, 93imtr4g 205 . . . 4  |-  ( q 
<Q  r  ->  ( r  e.  ( 1st `  B
)  ->  q  e.  ( 1st `  B ) ) )
1110imp 124 . . 3  |-  ( ( q  <Q  r  /\  r  e.  ( 1st `  B ) )  -> 
q  e.  ( 1st `  B ) )
1211rexlimivw 2603 . 2  |-  ( E. r  e.  Q.  (
q  <Q  r  /\  r  e.  ( 1st `  B
) )  ->  q  e.  ( 1st `  B
) )
1312a1i 9 1  |-  ( ( A  e.  P.  /\  q  e.  Q. )  ->  ( E. r  e. 
Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  B ) )  ->  q  e.  ( 1st `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   {cab 2175   E.wrex 2469   <.cop 3610   class class class wbr 4018   ` cfv 5235   1stc1st 6164   2ndc2nd 6165   Q.cnq 7310   *Qcrq 7314    <Q cltq 7315   P.cnp 7321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-mi 7336  df-lti 7337  df-enq 7377  df-nqqs 7378  df-ltnqqs 7383
This theorem is referenced by:  recexprlemrnd  7659
  Copyright terms: Public domain W3C validator