ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ghm0to0 Unicode version

Theorem f1ghm0to0 13608
Description: If a group homomorphism  F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a  |-  A  =  ( Base `  R
)
f1ghm0to0.b  |-  B  =  ( Base `  S
)
f1ghm0to0.n  |-  N  =  ( 0g `  R
)
f1ghm0to0.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
f1ghm0to0  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  .0.  <->  X  =  N ) )

Proof of Theorem f1ghm0to0
StepHypRef Expression
1 f1ghm0to0.n . . . . . 6  |-  N  =  ( 0g `  R
)
2 f1ghm0to0.0 . . . . . 6  |-  .0.  =  ( 0g `  S )
31, 2ghmid 13585 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  =  .0.  )
433ad2ant1 1021 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  ( F `  N )  =  .0.  )
54eqeq2d 2217 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  ( F `
 N )  <->  ( F `  X )  =  .0.  ) )
6 simp2 1001 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  F : A -1-1-> B )
7 simp3 1002 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  X  e.  A )
8 ghmgrp1 13581 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
9 f1ghm0to0.a . . . . . . 7  |-  A  =  ( Base `  R
)
109, 1grpidcl 13361 . . . . . 6  |-  ( R  e.  Grp  ->  N  e.  A )
118, 10syl 14 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  A )
12113ad2ant1 1021 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  N  e.  A )
13 f1veqaeq 5838 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  N  e.  A
) )  ->  (
( F `  X
)  =  ( F `
 N )  ->  X  =  N )
)
146, 7, 12, 13syl12anc 1248 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  ( F `
 N )  ->  X  =  N )
)
155, 14sylbird 170 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  .0.  ->  X  =  N ) )
16 fveq2 5576 . . . 4  |-  ( X  =  N  ->  ( F `  X )  =  ( F `  N ) )
1716, 4sylan9eqr 2260 . . 3  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  /\  X  =  N
)  ->  ( F `  X )  =  .0.  )
1817ex 115 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  ( X  =  N  ->  ( F `  X )  =  .0.  ) )
1915, 18impbid 129 1  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  .0.  <->  X  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   -1-1->wf1 5268   ` cfv 5271  (class class class)co 5944   Basecbs 12832   0gc0g 13088   Grpcgrp 13332    GrpHom cghm 13576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-ghm 13577
This theorem is referenced by:  ghmf1  13609  kerf1ghm  13610
  Copyright terms: Public domain W3C validator