ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ghm0to0 Unicode version

Theorem f1ghm0to0 13809
Description: If a group homomorphism  F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a  |-  A  =  ( Base `  R
)
f1ghm0to0.b  |-  B  =  ( Base `  S
)
f1ghm0to0.n  |-  N  =  ( 0g `  R
)
f1ghm0to0.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
f1ghm0to0  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  .0.  <->  X  =  N ) )

Proof of Theorem f1ghm0to0
StepHypRef Expression
1 f1ghm0to0.n . . . . . 6  |-  N  =  ( 0g `  R
)
2 f1ghm0to0.0 . . . . . 6  |-  .0.  =  ( 0g `  S )
31, 2ghmid 13786 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  =  .0.  )
433ad2ant1 1042 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  ( F `  N )  =  .0.  )
54eqeq2d 2241 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  ( F `
 N )  <->  ( F `  X )  =  .0.  ) )
6 simp2 1022 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  F : A -1-1-> B )
7 simp3 1023 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  X  e.  A )
8 ghmgrp1 13782 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
9 f1ghm0to0.a . . . . . . 7  |-  A  =  ( Base `  R
)
109, 1grpidcl 13562 . . . . . 6  |-  ( R  e.  Grp  ->  N  e.  A )
118, 10syl 14 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  A )
12113ad2ant1 1042 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  N  e.  A )
13 f1veqaeq 5893 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  N  e.  A
) )  ->  (
( F `  X
)  =  ( F `
 N )  ->  X  =  N )
)
146, 7, 12, 13syl12anc 1269 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  ( F `
 N )  ->  X  =  N )
)
155, 14sylbird 170 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  .0.  ->  X  =  N ) )
16 fveq2 5627 . . . 4  |-  ( X  =  N  ->  ( F `  X )  =  ( F `  N ) )
1716, 4sylan9eqr 2284 . . 3  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  /\  X  =  N
)  ->  ( F `  X )  =  .0.  )
1817ex 115 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  ( X  =  N  ->  ( F `  X )  =  .0.  ) )
1915, 18impbid 129 1  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  X  e.  A )  ->  (
( F `  X
)  =  .0.  <->  X  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   -1-1->wf1 5315   ` cfv 5318  (class class class)co 6001   Basecbs 13032   0gc0g 13289   Grpcgrp 13533    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-ghm 13778
This theorem is referenced by:  ghmf1  13810  kerf1ghm  13811
  Copyright terms: Public domain W3C validator