| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ghm0to0 | GIF version | ||
| Description: If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
| Ref | Expression |
|---|---|
| f1ghm0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
| f1ghm0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
| f1ghm0to0.n | ⊢ 𝑁 = (0g‘𝑅) |
| f1ghm0to0.0 | ⊢ 0 = (0g‘𝑆) |
| Ref | Expression |
|---|---|
| f1ghm0to0 | ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.n | . . . . . 6 ⊢ 𝑁 = (0g‘𝑅) | |
| 2 | f1ghm0to0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
| 3 | 1, 2 | ghmid 13781 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) = 0 ) |
| 4 | 3 | 3ad2ant1 1042 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑁) = 0 ) |
| 5 | 4 | eqeq2d 2241 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘𝑁) ↔ (𝐹‘𝑋) = 0 )) |
| 6 | simp2 1022 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐵) | |
| 7 | simp3 1023 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
| 8 | ghmgrp1 13777 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) | |
| 9 | f1ghm0to0.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
| 10 | 9, 1 | grpidcl 13557 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 𝑁 ∈ 𝐴) |
| 11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ 𝐴) |
| 12 | 11 | 3ad2ant1 1042 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑁 ∈ 𝐴) |
| 13 | f1veqaeq 5892 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑁 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘𝑁) → 𝑋 = 𝑁)) | |
| 14 | 6, 7, 12, 13 | syl12anc 1269 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘𝑁) → 𝑋 = 𝑁)) |
| 15 | 5, 14 | sylbird 170 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 → 𝑋 = 𝑁)) |
| 16 | fveq2 5626 | . . . 4 ⊢ (𝑋 = 𝑁 → (𝐹‘𝑋) = (𝐹‘𝑁)) | |
| 17 | 16, 4 | sylan9eqr 2284 | . . 3 ⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 𝑁) → (𝐹‘𝑋) = 0 ) |
| 18 | 17 | ex 115 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 𝑁 → (𝐹‘𝑋) = 0 )) |
| 19 | 15, 18 | impbid 129 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 –1-1→wf1 5314 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 0gc0g 13284 Grpcgrp 13528 GrpHom cghm 13772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-ghm 13773 |
| This theorem is referenced by: ghmf1 13805 kerf1ghm 13806 |
| Copyright terms: Public domain | W3C validator |