![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ghm0to0 | GIF version |
Description: If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
Ref | Expression |
---|---|
f1ghm0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
f1ghm0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
f1ghm0to0.n | ⊢ 𝑁 = (0g‘𝑅) |
f1ghm0to0.0 | ⊢ 0 = (0g‘𝑆) |
Ref | Expression |
---|---|
f1ghm0to0 | ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ghm0to0.n | . . . . . 6 ⊢ 𝑁 = (0g‘𝑅) | |
2 | f1ghm0to0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
3 | 1, 2 | ghmid 13322 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) = 0 ) |
4 | 3 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑁) = 0 ) |
5 | 4 | eqeq2d 2205 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘𝑁) ↔ (𝐹‘𝑋) = 0 )) |
6 | simp2 1000 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐵) | |
7 | simp3 1001 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
8 | ghmgrp1 13318 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) | |
9 | f1ghm0to0.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
10 | 9, 1 | grpidcl 13104 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 𝑁 ∈ 𝐴) |
11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ 𝐴) |
12 | 11 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑁 ∈ 𝐴) |
13 | f1veqaeq 5813 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑁 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘𝑁) → 𝑋 = 𝑁)) | |
14 | 6, 7, 12, 13 | syl12anc 1247 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘𝑁) → 𝑋 = 𝑁)) |
15 | 5, 14 | sylbird 170 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 → 𝑋 = 𝑁)) |
16 | fveq2 5555 | . . . 4 ⊢ (𝑋 = 𝑁 → (𝐹‘𝑋) = (𝐹‘𝑁)) | |
17 | 16, 4 | sylan9eqr 2248 | . . 3 ⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 𝑁) → (𝐹‘𝑋) = 0 ) |
18 | 17 | ex 115 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 𝑁 → (𝐹‘𝑋) = 0 )) |
19 | 15, 18 | impbid 129 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 –1-1→wf1 5252 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 0gc0g 12870 Grpcgrp 13075 GrpHom cghm 13313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-ghm 13314 |
This theorem is referenced by: ghmf1 13346 kerf1ghm 13347 |
Copyright terms: Public domain | W3C validator |