![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ghm0to0 | GIF version |
Description: If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
Ref | Expression |
---|---|
f1ghm0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
f1ghm0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
f1ghm0to0.n | ⊢ 𝑁 = (0g‘𝑅) |
f1ghm0to0.0 | ⊢ 0 = (0g‘𝑆) |
Ref | Expression |
---|---|
f1ghm0to0 | ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ghm0to0.n | . . . . . 6 ⊢ 𝑁 = (0g‘𝑅) | |
2 | f1ghm0to0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
3 | 1, 2 | ghmid 13213 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) = 0 ) |
4 | 3 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑁) = 0 ) |
5 | 4 | eqeq2d 2201 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘𝑁) ↔ (𝐹‘𝑋) = 0 )) |
6 | simp2 1000 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐵) | |
7 | simp3 1001 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
8 | ghmgrp1 13209 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) | |
9 | f1ghm0to0.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
10 | 9, 1 | grpidcl 12996 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 𝑁 ∈ 𝐴) |
11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ 𝐴) |
12 | 11 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑁 ∈ 𝐴) |
13 | f1veqaeq 5794 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑁 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘𝑁) → 𝑋 = 𝑁)) | |
14 | 6, 7, 12, 13 | syl12anc 1247 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘𝑁) → 𝑋 = 𝑁)) |
15 | 5, 14 | sylbird 170 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 → 𝑋 = 𝑁)) |
16 | fveq2 5537 | . . . 4 ⊢ (𝑋 = 𝑁 → (𝐹‘𝑋) = (𝐹‘𝑁)) | |
17 | 16, 4 | sylan9eqr 2244 | . . 3 ⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 𝑁) → (𝐹‘𝑋) = 0 ) |
18 | 17 | ex 115 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 𝑁 → (𝐹‘𝑋) = 0 )) |
19 | 15, 18 | impbid 129 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 –1-1→wf1 5235 ‘cfv 5238 (class class class)co 5900 Basecbs 12523 0gc0g 12772 Grpcgrp 12968 GrpHom cghm 13204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1re 7940 ax-addrcl 7943 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-inn 8955 df-2 9013 df-ndx 12526 df-slot 12527 df-base 12529 df-plusg 12613 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-ghm 13205 |
This theorem is referenced by: ghmf1 13237 kerf1ghm 13238 |
Copyright terms: Public domain | W3C validator |