| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > kerf1ghm | Unicode version | ||
| Description: A group homomorphism |
| Ref | Expression |
|---|---|
| f1ghm0to0.a |
|
| f1ghm0to0.b |
|
| f1ghm0to0.n |
|
| f1ghm0to0.0 |
|
| Ref | Expression |
|---|---|
| kerf1ghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . 7
| |
| 2 | f1fn 5505 |
. . . . . . . . . . 11
| |
| 3 | 2 | adantl 277 |
. . . . . . . . . 10
|
| 4 | elpreima 5722 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | syl 14 |
. . . . . . . . 9
|
| 6 | 5 | biimpa 296 |
. . . . . . . 8
|
| 7 | 6 | simpld 112 |
. . . . . . 7
|
| 8 | 6 | simprd 114 |
. . . . . . . 8
|
| 9 | elsng 3658 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
|
| 11 | 8, 10 | mpbid 147 |
. . . . . . 7
|
| 12 | f1ghm0to0.a |
. . . . . . . . . . 11
| |
| 13 | f1ghm0to0.b |
. . . . . . . . . . 11
| |
| 14 | f1ghm0to0.n |
. . . . . . . . . . 11
| |
| 15 | f1ghm0to0.0 |
. . . . . . . . . . 11
| |
| 16 | 12, 13, 14, 15 | f1ghm0to0 13723 |
. . . . . . . . . 10
|
| 17 | 16 | biimpd 144 |
. . . . . . . . 9
|
| 18 | 17 | 3expa 1206 |
. . . . . . . 8
|
| 19 | 18 | imp 124 |
. . . . . . 7
|
| 20 | 1, 7, 11, 19 | syl21anc 1249 |
. . . . . 6
|
| 21 | 20 | ex 115 |
. . . . 5
|
| 22 | velsn 3660 |
. . . . 5
| |
| 23 | 21, 22 | imbitrrdi 162 |
. . . 4
|
| 24 | 23 | ssrdv 3207 |
. . 3
|
| 25 | ghmgrp1 13696 |
. . . . . . 7
| |
| 26 | 12, 14 | grpidcl 13476 |
. . . . . . 7
|
| 27 | 25, 26 | syl 14 |
. . . . . 6
|
| 28 | 14, 15 | ghmid 13700 |
. . . . . . 7
|
| 29 | 12, 13 | ghmf 13698 |
. . . . . . . . 9
|
| 30 | 29, 27 | ffvelcdmd 5739 |
. . . . . . . 8
|
| 31 | elsng 3658 |
. . . . . . . 8
| |
| 32 | 30, 31 | syl 14 |
. . . . . . 7
|
| 33 | 28, 32 | mpbird 167 |
. . . . . 6
|
| 34 | ffn 5445 |
. . . . . . 7
| |
| 35 | elpreima 5722 |
. . . . . . 7
| |
| 36 | 29, 34, 35 | 3syl 17 |
. . . . . 6
|
| 37 | 27, 33, 36 | mpbir2and 947 |
. . . . 5
|
| 38 | 37 | snssd 3789 |
. . . 4
|
| 39 | 38 | adantr 276 |
. . 3
|
| 40 | 24, 39 | eqssd 3218 |
. 2
|
| 41 | 29 | adantr 276 |
. . 3
|
| 42 | simpl 109 |
. . . . . . . . . 10
| |
| 43 | simpr2l 1059 |
. . . . . . . . . 10
| |
| 44 | simpr2r 1060 |
. . . . . . . . . 10
| |
| 45 | simpr3 1008 |
. . . . . . . . . 10
| |
| 46 | eqid 2207 |
. . . . . . . . . . . 12
| |
| 47 | eqid 2207 |
. . . . . . . . . . . 12
| |
| 48 | 12, 15, 46, 47 | ghmeqker 13722 |
. . . . . . . . . . 11
|
| 49 | 48 | biimpa 296 |
. . . . . . . . . 10
|
| 50 | 42, 43, 44, 45, 49 | syl31anc 1253 |
. . . . . . . . 9
|
| 51 | simpr1 1006 |
. . . . . . . . 9
| |
| 52 | 50, 51 | eleqtrd 2286 |
. . . . . . . 8
|
| 53 | simp2 1001 |
. . . . . . . . . 10
| |
| 54 | 12, 47 | grpsubcl 13527 |
. . . . . . . . . . 11
|
| 55 | 54 | 3expb 1207 |
. . . . . . . . . 10
|
| 56 | 25, 53, 55 | syl2an 289 |
. . . . . . . . 9
|
| 57 | elsng 3658 |
. . . . . . . . 9
| |
| 58 | 56, 57 | syl 14 |
. . . . . . . 8
|
| 59 | 52, 58 | mpbid 147 |
. . . . . . 7
|
| 60 | 25 | adantr 276 |
. . . . . . . 8
|
| 61 | 12, 14, 47 | grpsubeq0 13533 |
. . . . . . . 8
|
| 62 | 60, 43, 44, 61 | syl3anc 1250 |
. . . . . . 7
|
| 63 | 59, 62 | mpbid 147 |
. . . . . 6
|
| 64 | 63 | 3anassrs 1232 |
. . . . 5
|
| 65 | 64 | ex 115 |
. . . 4
|
| 66 | 65 | ralrimivva 2590 |
. . 3
|
| 67 | dff13 5860 |
. . 3
| |
| 68 | 41, 66, 67 | sylanbrc 417 |
. 2
|
| 69 | 40, 68 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-sbg 13452 df-ghm 13692 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |