| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > kerf1ghm | Unicode version | ||
| Description: A group homomorphism |
| Ref | Expression |
|---|---|
| f1ghm0to0.a |
|
| f1ghm0to0.b |
|
| f1ghm0to0.n |
|
| f1ghm0to0.0 |
|
| Ref | Expression |
|---|---|
| kerf1ghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . 7
| |
| 2 | f1fn 5483 |
. . . . . . . . . . 11
| |
| 3 | 2 | adantl 277 |
. . . . . . . . . 10
|
| 4 | elpreima 5699 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | syl 14 |
. . . . . . . . 9
|
| 6 | 5 | biimpa 296 |
. . . . . . . 8
|
| 7 | 6 | simpld 112 |
. . . . . . 7
|
| 8 | 6 | simprd 114 |
. . . . . . . 8
|
| 9 | elsng 3648 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
|
| 11 | 8, 10 | mpbid 147 |
. . . . . . 7
|
| 12 | f1ghm0to0.a |
. . . . . . . . . . 11
| |
| 13 | f1ghm0to0.b |
. . . . . . . . . . 11
| |
| 14 | f1ghm0to0.n |
. . . . . . . . . . 11
| |
| 15 | f1ghm0to0.0 |
. . . . . . . . . . 11
| |
| 16 | 12, 13, 14, 15 | f1ghm0to0 13608 |
. . . . . . . . . 10
|
| 17 | 16 | biimpd 144 |
. . . . . . . . 9
|
| 18 | 17 | 3expa 1206 |
. . . . . . . 8
|
| 19 | 18 | imp 124 |
. . . . . . 7
|
| 20 | 1, 7, 11, 19 | syl21anc 1249 |
. . . . . 6
|
| 21 | 20 | ex 115 |
. . . . 5
|
| 22 | velsn 3650 |
. . . . 5
| |
| 23 | 21, 22 | imbitrrdi 162 |
. . . 4
|
| 24 | 23 | ssrdv 3199 |
. . 3
|
| 25 | ghmgrp1 13581 |
. . . . . . 7
| |
| 26 | 12, 14 | grpidcl 13361 |
. . . . . . 7
|
| 27 | 25, 26 | syl 14 |
. . . . . 6
|
| 28 | 14, 15 | ghmid 13585 |
. . . . . . 7
|
| 29 | 12, 13 | ghmf 13583 |
. . . . . . . . 9
|
| 30 | 29, 27 | ffvelcdmd 5716 |
. . . . . . . 8
|
| 31 | elsng 3648 |
. . . . . . . 8
| |
| 32 | 30, 31 | syl 14 |
. . . . . . 7
|
| 33 | 28, 32 | mpbird 167 |
. . . . . 6
|
| 34 | ffn 5425 |
. . . . . . 7
| |
| 35 | elpreima 5699 |
. . . . . . 7
| |
| 36 | 29, 34, 35 | 3syl 17 |
. . . . . 6
|
| 37 | 27, 33, 36 | mpbir2and 947 |
. . . . 5
|
| 38 | 37 | snssd 3778 |
. . . 4
|
| 39 | 38 | adantr 276 |
. . 3
|
| 40 | 24, 39 | eqssd 3210 |
. 2
|
| 41 | 29 | adantr 276 |
. . 3
|
| 42 | simpl 109 |
. . . . . . . . . 10
| |
| 43 | simpr2l 1059 |
. . . . . . . . . 10
| |
| 44 | simpr2r 1060 |
. . . . . . . . . 10
| |
| 45 | simpr3 1008 |
. . . . . . . . . 10
| |
| 46 | eqid 2205 |
. . . . . . . . . . . 12
| |
| 47 | eqid 2205 |
. . . . . . . . . . . 12
| |
| 48 | 12, 15, 46, 47 | ghmeqker 13607 |
. . . . . . . . . . 11
|
| 49 | 48 | biimpa 296 |
. . . . . . . . . 10
|
| 50 | 42, 43, 44, 45, 49 | syl31anc 1253 |
. . . . . . . . 9
|
| 51 | simpr1 1006 |
. . . . . . . . 9
| |
| 52 | 50, 51 | eleqtrd 2284 |
. . . . . . . 8
|
| 53 | simp2 1001 |
. . . . . . . . . 10
| |
| 54 | 12, 47 | grpsubcl 13412 |
. . . . . . . . . . 11
|
| 55 | 54 | 3expb 1207 |
. . . . . . . . . 10
|
| 56 | 25, 53, 55 | syl2an 289 |
. . . . . . . . 9
|
| 57 | elsng 3648 |
. . . . . . . . 9
| |
| 58 | 56, 57 | syl 14 |
. . . . . . . 8
|
| 59 | 52, 58 | mpbid 147 |
. . . . . . 7
|
| 60 | 25 | adantr 276 |
. . . . . . . 8
|
| 61 | 12, 14, 47 | grpsubeq0 13418 |
. . . . . . . 8
|
| 62 | 60, 43, 44, 61 | syl3anc 1250 |
. . . . . . 7
|
| 63 | 59, 62 | mpbid 147 |
. . . . . 6
|
| 64 | 63 | 3anassrs 1232 |
. . . . 5
|
| 65 | 64 | ex 115 |
. . . 4
|
| 66 | 65 | ralrimivva 2588 |
. . 3
|
| 67 | dff13 5837 |
. . 3
| |
| 68 | 41, 66, 67 | sylanbrc 417 |
. 2
|
| 69 | 40, 68 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-sbg 13337 df-ghm 13577 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |