ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  kerf1ghm Unicode version

Theorem kerf1ghm 13404
Description: A group homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a  |-  A  =  ( Base `  R
)
f1ghm0to0.b  |-  B  =  ( Base `  S
)
f1ghm0to0.n  |-  N  =  ( 0g `  R
)
f1ghm0to0.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
kerf1ghm  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )

Proof of Theorem kerf1ghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B ) )
2 f1fn 5465 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F  Fn  A )
32adantl 277 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  F  Fn  A )
4 elpreima 5681 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
53, 4syl 14 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
65biimpa 296 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  (
x  e.  A  /\  ( F `  x )  e.  {  .0.  }
) )
76simpld 112 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  x  e.  A )
86simprd 114 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F `  x )  e.  {  .0.  } )
9 elsng 3637 . . . . . . . . 9  |-  ( ( F `  x )  e.  {  .0.  }  ->  ( ( F `  x )  e.  {  .0.  }  <->  ( F `  x )  =  .0.  ) )
108, 9syl 14 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  (
( F `  x
)  e.  {  .0.  }  <-> 
( F `  x
)  =  .0.  )
)
118, 10mpbid 147 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F `  x )  =  .0.  )
12 f1ghm0to0.a . . . . . . . . . . 11  |-  A  =  ( Base `  R
)
13 f1ghm0to0.b . . . . . . . . . . 11  |-  B  =  ( Base `  S
)
14 f1ghm0to0.n . . . . . . . . . . 11  |-  N  =  ( 0g `  R
)
15 f1ghm0to0.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  S )
1612, 13, 14, 15f1ghm0to0 13402 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  <->  x  =  N ) )
1716biimpd 144 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  ->  x  =  N ) )
18173expa 1205 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A
)  ->  ( ( F `  x )  =  .0.  ->  x  =  N ) )
1918imp 124 . . . . . . 7  |-  ( ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A )  /\  ( F `  x )  =  .0.  )  ->  x  =  N )
201, 7, 11, 19syl21anc 1248 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  x  =  N )
2120ex 115 . . . . 5  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  =  N ) )
22 velsn 3639 . . . . 5  |-  ( x  e.  { N }  <->  x  =  N )
2321, 22imbitrrdi 162 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  e.  { N } ) )
2423ssrdv 3189 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  C_  { N } )
25 ghmgrp1 13375 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
2612, 14grpidcl 13161 . . . . . . 7  |-  ( R  e.  Grp  ->  N  e.  A )
2725, 26syl 14 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  A )
2814, 15ghmid 13379 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  =  .0.  )
2912, 13ghmf 13377 . . . . . . . . 9  |-  ( F  e.  ( R  GrpHom  S )  ->  F : A
--> B )
3029, 27ffvelcdmd 5698 . . . . . . . 8  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  e.  B
)
31 elsng 3637 . . . . . . . 8  |-  ( ( F `  N )  e.  B  ->  (
( F `  N
)  e.  {  .0.  }  <-> 
( F `  N
)  =  .0.  )
)
3230, 31syl 14 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( ( F `  N )  e.  {  .0.  }  <->  ( F `  N )  =  .0.  ) )
3328, 32mpbird 167 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  e.  {  .0.  } )
34 ffn 5407 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
35 elpreima 5681 . . . . . . 7  |-  ( F  Fn  A  ->  ( N  e.  ( `' F " {  .0.  }
)  <->  ( N  e.  A  /\  ( F `
 N )  e. 
{  .0.  } ) ) )
3629, 34, 353syl 17 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( N  e.  ( `' F " {  .0.  } )  <->  ( N  e.  A  /\  ( F `  N )  e.  {  .0.  } ) ) )
3727, 33, 36mpbir2and 946 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  ( `' F " {  .0.  } ) )
3837snssd 3767 . . . 4  |-  ( F  e.  ( R  GrpHom  S )  ->  { N }  C_  ( `' F " {  .0.  } ) )
3938adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  { N }  C_  ( `' F " {  .0.  } ) )
4024, 39eqssd 3200 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  =  { N } )
4129adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A --> B )
42 simpl 109 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F  e.  ( R  GrpHom  S ) )
43 simpr2l 1058 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  e.  A )
44 simpr2r 1059 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  y  e.  A )
45 simpr3 1007 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
46 eqid 2196 . . . . . . . . . . . 12  |-  ( `' F " {  .0.  } )  =  ( `' F " {  .0.  } )
47 eqid 2196 . . . . . . . . . . . 12  |-  ( -g `  R )  =  (
-g `  R )
4812, 15, 46, 47ghmeqker 13401 . . . . . . . . . . 11  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( x
( -g `  R ) y )  e.  ( `' F " {  .0.  } ) ) )
4948biimpa 296 . . . . . . . . . 10  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) )  ->  ( x (
-g `  R )
y )  e.  ( `' F " {  .0.  } ) )
5042, 43, 44, 45, 49syl31anc 1252 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  ( `' F " {  .0.  } ) )
51 simpr1 1005 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( `' F " {  .0.  } )  =  { N } )
5250, 51eleqtrd 2275 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e. 
{ N } )
53 simp2 1000 . . . . . . . . . 10  |-  ( ( ( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) )  ->  ( x  e.  A  /\  y  e.  A ) )
5412, 47grpsubcl 13212 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( x ( -g `  R ) y )  e.  A )
55543expb 1206 . . . . . . . . . 10  |-  ( ( R  e.  Grp  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x ( -g `  R
) y )  e.  A )
5625, 53, 55syl2an 289 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  A )
57 elsng 3637 . . . . . . . . 9  |-  ( ( x ( -g `  R
) y )  e.  A  ->  ( (
x ( -g `  R
) y )  e. 
{ N }  <->  ( x
( -g `  R ) y )  =  N ) )
5856, 57syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  e.  { N }  <->  ( x ( -g `  R
) y )  =  N ) )
5952, 58mpbid 147 . . . . . . 7  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  =  N )
6025adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  R  e.  Grp )
6112, 14, 47grpsubeq0 13218 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( ( x (
-g `  R )
y )  =  N  <-> 
x  =  y ) )
6260, 43, 44, 61syl3anc 1249 . . . . . . 7  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  =  N  <->  x  =  y ) )
6359, 62mpbid 147 . . . . . 6  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  =  y )
64633anassrs 1231 . . . . 5  |-  ( ( ( ( F  e.  ( R  GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N }
)  /\  ( x  e.  A  /\  y  e.  A ) )  /\  ( F `  x )  =  ( F `  y ) )  ->  x  =  y )
6564ex 115 . . . 4  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6665ralrimivva 2579 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
67 dff13 5815 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6841, 66, 67sylanbrc 417 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A -1-1-> B )
6940, 68impbida 596 1  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   {csn 3622   `'ccnv 4662   "cima 4666    Fn wfn 5253   -->wf 5254   -1-1->wf1 5255   ` cfv 5258  (class class class)co 5922   Basecbs 12678   0gc0g 12927   Grpcgrp 13132   -gcsg 13134    GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-ghm 13371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator