ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  kerf1ghm Unicode version

Theorem kerf1ghm 13344
Description: A group homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a  |-  A  =  ( Base `  R
)
f1ghm0to0.b  |-  B  =  ( Base `  S
)
f1ghm0to0.n  |-  N  =  ( 0g `  R
)
f1ghm0to0.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
kerf1ghm  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )

Proof of Theorem kerf1ghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B ) )
2 f1fn 5461 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F  Fn  A )
32adantl 277 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  F  Fn  A )
4 elpreima 5677 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
53, 4syl 14 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
65biimpa 296 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  (
x  e.  A  /\  ( F `  x )  e.  {  .0.  }
) )
76simpld 112 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  x  e.  A )
86simprd 114 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F `  x )  e.  {  .0.  } )
9 elsng 3633 . . . . . . . . 9  |-  ( ( F `  x )  e.  {  .0.  }  ->  ( ( F `  x )  e.  {  .0.  }  <->  ( F `  x )  =  .0.  ) )
108, 9syl 14 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  (
( F `  x
)  e.  {  .0.  }  <-> 
( F `  x
)  =  .0.  )
)
118, 10mpbid 147 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F `  x )  =  .0.  )
12 f1ghm0to0.a . . . . . . . . . . 11  |-  A  =  ( Base `  R
)
13 f1ghm0to0.b . . . . . . . . . . 11  |-  B  =  ( Base `  S
)
14 f1ghm0to0.n . . . . . . . . . . 11  |-  N  =  ( 0g `  R
)
15 f1ghm0to0.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  S )
1612, 13, 14, 15f1ghm0to0 13342 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  <->  x  =  N ) )
1716biimpd 144 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  ->  x  =  N ) )
18173expa 1205 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A
)  ->  ( ( F `  x )  =  .0.  ->  x  =  N ) )
1918imp 124 . . . . . . 7  |-  ( ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A )  /\  ( F `  x )  =  .0.  )  ->  x  =  N )
201, 7, 11, 19syl21anc 1248 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  x  =  N )
2120ex 115 . . . . 5  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  =  N ) )
22 velsn 3635 . . . . 5  |-  ( x  e.  { N }  <->  x  =  N )
2321, 22imbitrrdi 162 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  e.  { N } ) )
2423ssrdv 3185 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  C_  { N } )
25 ghmgrp1 13315 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
2612, 14grpidcl 13101 . . . . . . 7  |-  ( R  e.  Grp  ->  N  e.  A )
2725, 26syl 14 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  A )
2814, 15ghmid 13319 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  =  .0.  )
2912, 13ghmf 13317 . . . . . . . . 9  |-  ( F  e.  ( R  GrpHom  S )  ->  F : A
--> B )
3029, 27ffvelcdmd 5694 . . . . . . . 8  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  e.  B
)
31 elsng 3633 . . . . . . . 8  |-  ( ( F `  N )  e.  B  ->  (
( F `  N
)  e.  {  .0.  }  <-> 
( F `  N
)  =  .0.  )
)
3230, 31syl 14 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( ( F `  N )  e.  {  .0.  }  <->  ( F `  N )  =  .0.  ) )
3328, 32mpbird 167 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  e.  {  .0.  } )
34 ffn 5403 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
35 elpreima 5677 . . . . . . 7  |-  ( F  Fn  A  ->  ( N  e.  ( `' F " {  .0.  }
)  <->  ( N  e.  A  /\  ( F `
 N )  e. 
{  .0.  } ) ) )
3629, 34, 353syl 17 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( N  e.  ( `' F " {  .0.  } )  <->  ( N  e.  A  /\  ( F `  N )  e.  {  .0.  } ) ) )
3727, 33, 36mpbir2and 946 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  ( `' F " {  .0.  } ) )
3837snssd 3763 . . . 4  |-  ( F  e.  ( R  GrpHom  S )  ->  { N }  C_  ( `' F " {  .0.  } ) )
3938adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  { N }  C_  ( `' F " {  .0.  } ) )
4024, 39eqssd 3196 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  =  { N } )
4129adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A --> B )
42 simpl 109 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F  e.  ( R  GrpHom  S ) )
43 simpr2l 1058 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  e.  A )
44 simpr2r 1059 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  y  e.  A )
45 simpr3 1007 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
46 eqid 2193 . . . . . . . . . . . 12  |-  ( `' F " {  .0.  } )  =  ( `' F " {  .0.  } )
47 eqid 2193 . . . . . . . . . . . 12  |-  ( -g `  R )  =  (
-g `  R )
4812, 15, 46, 47ghmeqker 13341 . . . . . . . . . . 11  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( x
( -g `  R ) y )  e.  ( `' F " {  .0.  } ) ) )
4948biimpa 296 . . . . . . . . . 10  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) )  ->  ( x (
-g `  R )
y )  e.  ( `' F " {  .0.  } ) )
5042, 43, 44, 45, 49syl31anc 1252 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  ( `' F " {  .0.  } ) )
51 simpr1 1005 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( `' F " {  .0.  } )  =  { N } )
5250, 51eleqtrd 2272 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e. 
{ N } )
53 simp2 1000 . . . . . . . . . 10  |-  ( ( ( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) )  ->  ( x  e.  A  /\  y  e.  A ) )
5412, 47grpsubcl 13152 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( x ( -g `  R ) y )  e.  A )
55543expb 1206 . . . . . . . . . 10  |-  ( ( R  e.  Grp  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x ( -g `  R
) y )  e.  A )
5625, 53, 55syl2an 289 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  A )
57 elsng 3633 . . . . . . . . 9  |-  ( ( x ( -g `  R
) y )  e.  A  ->  ( (
x ( -g `  R
) y )  e. 
{ N }  <->  ( x
( -g `  R ) y )  =  N ) )
5856, 57syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  e.  { N }  <->  ( x ( -g `  R
) y )  =  N ) )
5952, 58mpbid 147 . . . . . . 7  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  =  N )
6025adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  R  e.  Grp )
6112, 14, 47grpsubeq0 13158 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( ( x (
-g `  R )
y )  =  N  <-> 
x  =  y ) )
6260, 43, 44, 61syl3anc 1249 . . . . . . 7  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  =  N  <->  x  =  y ) )
6359, 62mpbid 147 . . . . . 6  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  =  y )
64633anassrs 1231 . . . . 5  |-  ( ( ( ( F  e.  ( R  GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N }
)  /\  ( x  e.  A  /\  y  e.  A ) )  /\  ( F `  x )  =  ( F `  y ) )  ->  x  =  y )
6564ex 115 . . . 4  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6665ralrimivva 2576 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
67 dff13 5811 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6841, 66, 67sylanbrc 417 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A -1-1-> B )
6940, 68impbida 596 1  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   {csn 3618   `'ccnv 4658   "cima 4662    Fn wfn 5249   -->wf 5250   -1-1->wf1 5251   ` cfv 5254  (class class class)co 5918   Basecbs 12618   0gc0g 12867   Grpcgrp 13072   -gcsg 13074    GrpHom cghm 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-ghm 13311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator