ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  kerf1ghm Unicode version

Theorem kerf1ghm 13811
Description: A group homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a  |-  A  =  ( Base `  R
)
f1ghm0to0.b  |-  B  =  ( Base `  S
)
f1ghm0to0.n  |-  N  =  ( 0g `  R
)
f1ghm0to0.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
kerf1ghm  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )

Proof of Theorem kerf1ghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B ) )
2 f1fn 5533 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F  Fn  A )
32adantl 277 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  F  Fn  A )
4 elpreima 5754 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
53, 4syl 14 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
65biimpa 296 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  (
x  e.  A  /\  ( F `  x )  e.  {  .0.  }
) )
76simpld 112 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  x  e.  A )
86simprd 114 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F `  x )  e.  {  .0.  } )
9 elsng 3681 . . . . . . . . 9  |-  ( ( F `  x )  e.  {  .0.  }  ->  ( ( F `  x )  e.  {  .0.  }  <->  ( F `  x )  =  .0.  ) )
108, 9syl 14 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  (
( F `  x
)  e.  {  .0.  }  <-> 
( F `  x
)  =  .0.  )
)
118, 10mpbid 147 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F `  x )  =  .0.  )
12 f1ghm0to0.a . . . . . . . . . . 11  |-  A  =  ( Base `  R
)
13 f1ghm0to0.b . . . . . . . . . . 11  |-  B  =  ( Base `  S
)
14 f1ghm0to0.n . . . . . . . . . . 11  |-  N  =  ( 0g `  R
)
15 f1ghm0to0.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  S )
1612, 13, 14, 15f1ghm0to0 13809 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  <->  x  =  N ) )
1716biimpd 144 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  ->  x  =  N ) )
18173expa 1227 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A
)  ->  ( ( F `  x )  =  .0.  ->  x  =  N ) )
1918imp 124 . . . . . . 7  |-  ( ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A )  /\  ( F `  x )  =  .0.  )  ->  x  =  N )
201, 7, 11, 19syl21anc 1270 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  x  =  N )
2120ex 115 . . . . 5  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  =  N ) )
22 velsn 3683 . . . . 5  |-  ( x  e.  { N }  <->  x  =  N )
2321, 22imbitrrdi 162 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  e.  { N } ) )
2423ssrdv 3230 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  C_  { N } )
25 ghmgrp1 13782 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
2612, 14grpidcl 13562 . . . . . . 7  |-  ( R  e.  Grp  ->  N  e.  A )
2725, 26syl 14 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  A )
2814, 15ghmid 13786 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  =  .0.  )
2912, 13ghmf 13784 . . . . . . . . 9  |-  ( F  e.  ( R  GrpHom  S )  ->  F : A
--> B )
3029, 27ffvelcdmd 5771 . . . . . . . 8  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  e.  B
)
31 elsng 3681 . . . . . . . 8  |-  ( ( F `  N )  e.  B  ->  (
( F `  N
)  e.  {  .0.  }  <-> 
( F `  N
)  =  .0.  )
)
3230, 31syl 14 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( ( F `  N )  e.  {  .0.  }  <->  ( F `  N )  =  .0.  ) )
3328, 32mpbird 167 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  e.  {  .0.  } )
34 ffn 5473 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
35 elpreima 5754 . . . . . . 7  |-  ( F  Fn  A  ->  ( N  e.  ( `' F " {  .0.  }
)  <->  ( N  e.  A  /\  ( F `
 N )  e. 
{  .0.  } ) ) )
3629, 34, 353syl 17 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( N  e.  ( `' F " {  .0.  } )  <->  ( N  e.  A  /\  ( F `  N )  e.  {  .0.  } ) ) )
3727, 33, 36mpbir2and 950 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  ( `' F " {  .0.  } ) )
3837snssd 3813 . . . 4  |-  ( F  e.  ( R  GrpHom  S )  ->  { N }  C_  ( `' F " {  .0.  } ) )
3938adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  { N }  C_  ( `' F " {  .0.  } ) )
4024, 39eqssd 3241 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  =  { N } )
4129adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A --> B )
42 simpl 109 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F  e.  ( R  GrpHom  S ) )
43 simpr2l 1080 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  e.  A )
44 simpr2r 1081 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  y  e.  A )
45 simpr3 1029 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
46 eqid 2229 . . . . . . . . . . . 12  |-  ( `' F " {  .0.  } )  =  ( `' F " {  .0.  } )
47 eqid 2229 . . . . . . . . . . . 12  |-  ( -g `  R )  =  (
-g `  R )
4812, 15, 46, 47ghmeqker 13808 . . . . . . . . . . 11  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( x
( -g `  R ) y )  e.  ( `' F " {  .0.  } ) ) )
4948biimpa 296 . . . . . . . . . 10  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) )  ->  ( x (
-g `  R )
y )  e.  ( `' F " {  .0.  } ) )
5042, 43, 44, 45, 49syl31anc 1274 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  ( `' F " {  .0.  } ) )
51 simpr1 1027 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( `' F " {  .0.  } )  =  { N } )
5250, 51eleqtrd 2308 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e. 
{ N } )
53 simp2 1022 . . . . . . . . . 10  |-  ( ( ( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) )  ->  ( x  e.  A  /\  y  e.  A ) )
5412, 47grpsubcl 13613 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( x ( -g `  R ) y )  e.  A )
55543expb 1228 . . . . . . . . . 10  |-  ( ( R  e.  Grp  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x ( -g `  R
) y )  e.  A )
5625, 53, 55syl2an 289 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  A )
57 elsng 3681 . . . . . . . . 9  |-  ( ( x ( -g `  R
) y )  e.  A  ->  ( (
x ( -g `  R
) y )  e. 
{ N }  <->  ( x
( -g `  R ) y )  =  N ) )
5856, 57syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  e.  { N }  <->  ( x ( -g `  R
) y )  =  N ) )
5952, 58mpbid 147 . . . . . . 7  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  =  N )
6025adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  R  e.  Grp )
6112, 14, 47grpsubeq0 13619 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( ( x (
-g `  R )
y )  =  N  <-> 
x  =  y ) )
6260, 43, 44, 61syl3anc 1271 . . . . . . 7  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  =  N  <->  x  =  y ) )
6359, 62mpbid 147 . . . . . 6  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  =  y )
64633anassrs 1253 . . . . 5  |-  ( ( ( ( F  e.  ( R  GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N }
)  /\  ( x  e.  A  /\  y  e.  A ) )  /\  ( F `  x )  =  ( F `  y ) )  ->  x  =  y )
6564ex 115 . . . 4  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6665ralrimivva 2612 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
67 dff13 5892 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6841, 66, 67sylanbrc 417 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A -1-1-> B )
6940, 68impbida 598 1  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   {csn 3666   `'ccnv 4718   "cima 4722    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   ` cfv 5318  (class class class)co 6001   Basecbs 13032   0gc0g 13289   Grpcgrp 13533   -gcsg 13535    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-ghm 13778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator