ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  kerf1ghm Unicode version

Theorem kerf1ghm 13643
Description: A group homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a  |-  A  =  ( Base `  R
)
f1ghm0to0.b  |-  B  =  ( Base `  S
)
f1ghm0to0.n  |-  N  =  ( 0g `  R
)
f1ghm0to0.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
kerf1ghm  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )

Proof of Theorem kerf1ghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B ) )
2 f1fn 5485 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F  Fn  A )
32adantl 277 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  F  Fn  A )
4 elpreima 5701 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
53, 4syl 14 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  <->  ( x  e.  A  /\  ( F `
 x )  e. 
{  .0.  } ) ) )
65biimpa 296 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  (
x  e.  A  /\  ( F `  x )  e.  {  .0.  }
) )
76simpld 112 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  x  e.  A )
86simprd 114 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F `  x )  e.  {  .0.  } )
9 elsng 3648 . . . . . . . . 9  |-  ( ( F `  x )  e.  {  .0.  }  ->  ( ( F `  x )  e.  {  .0.  }  <->  ( F `  x )  =  .0.  ) )
108, 9syl 14 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  (
( F `  x
)  e.  {  .0.  }  <-> 
( F `  x
)  =  .0.  )
)
118, 10mpbid 147 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  ( F `  x )  =  .0.  )
12 f1ghm0to0.a . . . . . . . . . . 11  |-  A  =  ( Base `  R
)
13 f1ghm0to0.b . . . . . . . . . . 11  |-  B  =  ( Base `  S
)
14 f1ghm0to0.n . . . . . . . . . . 11  |-  N  =  ( 0g `  R
)
15 f1ghm0to0.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  S )
1612, 13, 14, 15f1ghm0to0 13641 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  <->  x  =  N ) )
1716biimpd 144 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  ->  x  =  N ) )
18173expa 1206 . . . . . . . 8  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A
)  ->  ( ( F `  x )  =  .0.  ->  x  =  N ) )
1918imp 124 . . . . . . 7  |-  ( ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A )  /\  ( F `  x )  =  .0.  )  ->  x  =  N )
201, 7, 11, 19syl21anc 1249 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  ( `' F " {  .0.  } ) )  ->  x  =  N )
2120ex 115 . . . . 5  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  =  N ) )
22 velsn 3650 . . . . 5  |-  ( x  e.  { N }  <->  x  =  N )
2321, 22imbitrrdi 162 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( x  e.  ( `' F " {  .0.  } )  ->  x  e.  { N } ) )
2423ssrdv 3199 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  C_  { N } )
25 ghmgrp1 13614 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
2612, 14grpidcl 13394 . . . . . . 7  |-  ( R  e.  Grp  ->  N  e.  A )
2725, 26syl 14 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  A )
2814, 15ghmid 13618 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  =  .0.  )
2912, 13ghmf 13616 . . . . . . . . 9  |-  ( F  e.  ( R  GrpHom  S )  ->  F : A
--> B )
3029, 27ffvelcdmd 5718 . . . . . . . 8  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  e.  B
)
31 elsng 3648 . . . . . . . 8  |-  ( ( F `  N )  e.  B  ->  (
( F `  N
)  e.  {  .0.  }  <-> 
( F `  N
)  =  .0.  )
)
3230, 31syl 14 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  ( ( F `  N )  e.  {  .0.  }  <->  ( F `  N )  =  .0.  ) )
3328, 32mpbird 167 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F `  N )  e.  {  .0.  } )
34 ffn 5427 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
35 elpreima 5701 . . . . . . 7  |-  ( F  Fn  A  ->  ( N  e.  ( `' F " {  .0.  }
)  <->  ( N  e.  A  /\  ( F `
 N )  e. 
{  .0.  } ) ) )
3629, 34, 353syl 17 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  ( N  e.  ( `' F " {  .0.  } )  <->  ( N  e.  A  /\  ( F `  N )  e.  {  .0.  } ) ) )
3727, 33, 36mpbir2and 947 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  N  e.  ( `' F " {  .0.  } ) )
3837snssd 3778 . . . 4  |-  ( F  e.  ( R  GrpHom  S )  ->  { N }  C_  ( `' F " {  .0.  } ) )
3938adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  { N }  C_  ( `' F " {  .0.  } ) )
4024, 39eqssd 3210 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  -> 
( `' F " {  .0.  } )  =  { N } )
4129adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A --> B )
42 simpl 109 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F  e.  ( R  GrpHom  S ) )
43 simpr2l 1059 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  e.  A )
44 simpr2r 1060 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  y  e.  A )
45 simpr3 1008 . . . . . . . . . 10  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
46 eqid 2205 . . . . . . . . . . . 12  |-  ( `' F " {  .0.  } )  =  ( `' F " {  .0.  } )
47 eqid 2205 . . . . . . . . . . . 12  |-  ( -g `  R )  =  (
-g `  R )
4812, 15, 46, 47ghmeqker 13640 . . . . . . . . . . 11  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( x
( -g `  R ) y )  e.  ( `' F " {  .0.  } ) ) )
4948biimpa 296 . . . . . . . . . 10  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) )  ->  ( x (
-g `  R )
y )  e.  ( `' F " {  .0.  } ) )
5042, 43, 44, 45, 49syl31anc 1253 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  ( `' F " {  .0.  } ) )
51 simpr1 1006 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( `' F " {  .0.  } )  =  { N } )
5250, 51eleqtrd 2284 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e. 
{ N } )
53 simp2 1001 . . . . . . . . . 10  |-  ( ( ( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) )  ->  ( x  e.  A  /\  y  e.  A ) )
5412, 47grpsubcl 13445 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( x ( -g `  R ) y )  e.  A )
55543expb 1207 . . . . . . . . . 10  |-  ( ( R  e.  Grp  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x ( -g `  R
) y )  e.  A )
5625, 53, 55syl2an 289 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  e.  A )
57 elsng 3648 . . . . . . . . 9  |-  ( ( x ( -g `  R
) y )  e.  A  ->  ( (
x ( -g `  R
) y )  e. 
{ N }  <->  ( x
( -g `  R ) y )  =  N ) )
5856, 57syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  e.  { N }  <->  ( x ( -g `  R
) y )  =  N ) )
5952, 58mpbid 147 . . . . . . 7  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
x ( -g `  R
) y )  =  N )
6025adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  R  e.  Grp )
6112, 14, 47grpsubeq0 13451 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  A  /\  y  e.  A )  ->  ( ( x (
-g `  R )
y )  =  N  <-> 
x  =  y ) )
6260, 43, 44, 61syl3anc 1250 . . . . . . 7  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( x ( -g `  R ) y )  =  N  <->  x  =  y ) )
6359, 62mpbid 147 . . . . . 6  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
( `' F " {  .0.  } )  =  { N }  /\  ( x  e.  A  /\  y  e.  A
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  =  y )
64633anassrs 1232 . . . . 5  |-  ( ( ( ( F  e.  ( R  GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N }
)  /\  ( x  e.  A  /\  y  e.  A ) )  /\  ( F `  x )  =  ( F `  y ) )  ->  x  =  y )
6564ex 115 . . . 4  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6665ralrimivva 2588 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
67 dff13 5839 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6841, 66, 67sylanbrc 417 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  ( `' F " {  .0.  } )  =  { N } )  ->  F : A -1-1-> B )
6940, 68impbida 596 1  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   {csn 3633   `'ccnv 4675   "cima 4679    Fn wfn 5267   -->wf 5268   -1-1->wf1 5269   ` cfv 5272  (class class class)co 5946   Basecbs 12865   0gc0g 13121   Grpcgrp 13365   -gcsg 13367    GrpHom cghm 13609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-inn 9039  df-2 9097  df-ndx 12868  df-slot 12869  df-base 12871  df-plusg 12955  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-sbg 13370  df-ghm 13610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator