ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmeqker Unicode version

Theorem ghmeqker 13207
Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmeqker.b  |-  B  =  ( Base `  S
)
ghmeqker.z  |-  .0.  =  ( 0g `  T )
ghmeqker.k  |-  K  =  ( `' F " {  .0.  } )
ghmeqker.m  |-  .-  =  ( -g `  S )
Assertion
Ref Expression
ghmeqker  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
)  =  ( F `
 V )  <->  ( U  .-  V )  e.  K
) )

Proof of Theorem ghmeqker
StepHypRef Expression
1 ghmeqker.k . . . . 5  |-  K  =  ( `' F " {  .0.  } )
2 ghmeqker.z . . . . . . 7  |-  .0.  =  ( 0g `  T )
32sneqi 3619 . . . . . 6  |-  {  .0.  }  =  { ( 0g
`  T ) }
43imaeq2i 4986 . . . . 5  |-  ( `' F " {  .0.  } )  =  ( `' F " { ( 0g `  T ) } )
51, 4eqtri 2210 . . . 4  |-  K  =  ( `' F " { ( 0g `  T ) } )
65eleq2i 2256 . . 3  |-  ( ( U  .-  V )  e.  K  <->  ( U  .-  V )  e.  ( `' F " { ( 0g `  T ) } ) )
7 ghmeqker.b . . . . . . 7  |-  B  =  ( Base `  S
)
8 eqid 2189 . . . . . . 7  |-  ( Base `  T )  =  (
Base `  T )
97, 8ghmf 13183 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  F : B
--> ( Base `  T
) )
109ffnd 5385 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F  Fn  B )
11103ad2ant1 1020 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  F  Fn  B )
12 fniniseg 5656 . . . 4  |-  ( F  Fn  B  ->  (
( U  .-  V
)  e.  ( `' F " { ( 0g `  T ) } )  <->  ( ( U  .-  V )  e.  B  /\  ( F `
 ( U  .-  V ) )  =  ( 0g `  T
) ) ) )
1311, 12syl 14 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( U  .-  V
)  e.  ( `' F " { ( 0g `  T ) } )  <->  ( ( U  .-  V )  e.  B  /\  ( F `
 ( U  .-  V ) )  =  ( 0g `  T
) ) ) )
146, 13bitrid 192 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( U  .-  V
)  e.  K  <->  ( ( U  .-  V )  e.  B  /\  ( F `
 ( U  .-  V ) )  =  ( 0g `  T
) ) ) )
15 ghmgrp1 13181 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
16 ghmeqker.m . . . . . 6  |-  .-  =  ( -g `  S )
177, 16grpsubcl 13021 . . . . 5  |-  ( ( S  e.  Grp  /\  U  e.  B  /\  V  e.  B )  ->  ( U  .-  V
)  e.  B )
1815, 17syl3an1 1282 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( U  .-  V )  e.  B )
1918biantrurd 305 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  ( U  .-  V ) )  =  ( 0g `  T )  <->  ( ( U  .-  V )  e.  B  /\  ( F `
 ( U  .-  V ) )  =  ( 0g `  T
) ) ) )
20 eqid 2189 . . . . 5  |-  ( -g `  T )  =  (
-g `  T )
217, 16, 20ghmsub 13187 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( ( F `  U ) ( -g `  T ) ( F `
 V ) ) )
2221eqeq1d 2198 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  ( U  .-  V ) )  =  ( 0g `  T )  <->  ( ( F `  U )
( -g `  T ) ( F `  V
) )  =  ( 0g `  T ) ) )
2319, 22bitr3d 190 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( ( U  .-  V )  e.  B  /\  ( F `  ( U  .-  V ) )  =  ( 0g `  T ) )  <->  ( ( F `  U )
( -g `  T ) ( F `  V
) )  =  ( 0g `  T ) ) )
24 ghmgrp2 13182 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
25243ad2ant1 1020 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  T  e.  Grp )
2693ad2ant1 1020 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  F : B --> ( Base `  T
) )
27 simp2 1000 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  U  e.  B )
2826, 27ffvelcdmd 5672 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  U )  e.  ( Base `  T
) )
29 simp3 1001 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  V  e.  B )
3026, 29ffvelcdmd 5672 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  V )  e.  ( Base `  T
) )
31 eqid 2189 . . . 4  |-  ( 0g
`  T )  =  ( 0g `  T
)
328, 31, 20grpsubeq0 13027 . . 3  |-  ( ( T  e.  Grp  /\  ( F `  U )  e.  ( Base `  T
)  /\  ( F `  V )  e.  (
Base `  T )
)  ->  ( (
( F `  U
) ( -g `  T
) ( F `  V ) )  =  ( 0g `  T
)  <->  ( F `  U )  =  ( F `  V ) ) )
3325, 28, 30, 32syl3anc 1249 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( ( F `  U ) ( -g `  T ) ( F `
 V ) )  =  ( 0g `  T )  <->  ( F `  U )  =  ( F `  V ) ) )
3414, 23, 333bitrrd 215 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
)  =  ( F `
 V )  <->  ( U  .-  V )  e.  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   {csn 3607   `'ccnv 4643   "cima 4647    Fn wfn 5230   -->wf 5231   ` cfv 5235  (class class class)co 5895   Basecbs 12511   0gc0g 12758   Grpcgrp 12942   -gcsg 12944    GrpHom cghm 13176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-inn 8949  df-2 9007  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-sbg 12947  df-ghm 13177
This theorem is referenced by:  kerf1ghm  13210
  Copyright terms: Public domain W3C validator