ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmeqker Unicode version

Theorem ghmeqker 13341
Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmeqker.b  |-  B  =  ( Base `  S
)
ghmeqker.z  |-  .0.  =  ( 0g `  T )
ghmeqker.k  |-  K  =  ( `' F " {  .0.  } )
ghmeqker.m  |-  .-  =  ( -g `  S )
Assertion
Ref Expression
ghmeqker  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
)  =  ( F `
 V )  <->  ( U  .-  V )  e.  K
) )

Proof of Theorem ghmeqker
StepHypRef Expression
1 ghmeqker.k . . . . 5  |-  K  =  ( `' F " {  .0.  } )
2 ghmeqker.z . . . . . . 7  |-  .0.  =  ( 0g `  T )
32sneqi 3630 . . . . . 6  |-  {  .0.  }  =  { ( 0g
`  T ) }
43imaeq2i 5003 . . . . 5  |-  ( `' F " {  .0.  } )  =  ( `' F " { ( 0g `  T ) } )
51, 4eqtri 2214 . . . 4  |-  K  =  ( `' F " { ( 0g `  T ) } )
65eleq2i 2260 . . 3  |-  ( ( U  .-  V )  e.  K  <->  ( U  .-  V )  e.  ( `' F " { ( 0g `  T ) } ) )
7 ghmeqker.b . . . . . . 7  |-  B  =  ( Base `  S
)
8 eqid 2193 . . . . . . 7  |-  ( Base `  T )  =  (
Base `  T )
97, 8ghmf 13317 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  F : B
--> ( Base `  T
) )
109ffnd 5404 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F  Fn  B )
11103ad2ant1 1020 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  F  Fn  B )
12 fniniseg 5678 . . . 4  |-  ( F  Fn  B  ->  (
( U  .-  V
)  e.  ( `' F " { ( 0g `  T ) } )  <->  ( ( U  .-  V )  e.  B  /\  ( F `
 ( U  .-  V ) )  =  ( 0g `  T
) ) ) )
1311, 12syl 14 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( U  .-  V
)  e.  ( `' F " { ( 0g `  T ) } )  <->  ( ( U  .-  V )  e.  B  /\  ( F `
 ( U  .-  V ) )  =  ( 0g `  T
) ) ) )
146, 13bitrid 192 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( U  .-  V
)  e.  K  <->  ( ( U  .-  V )  e.  B  /\  ( F `
 ( U  .-  V ) )  =  ( 0g `  T
) ) ) )
15 ghmgrp1 13315 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
16 ghmeqker.m . . . . . 6  |-  .-  =  ( -g `  S )
177, 16grpsubcl 13152 . . . . 5  |-  ( ( S  e.  Grp  /\  U  e.  B  /\  V  e.  B )  ->  ( U  .-  V
)  e.  B )
1815, 17syl3an1 1282 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( U  .-  V )  e.  B )
1918biantrurd 305 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  ( U  .-  V ) )  =  ( 0g `  T )  <->  ( ( U  .-  V )  e.  B  /\  ( F `
 ( U  .-  V ) )  =  ( 0g `  T
) ) ) )
20 eqid 2193 . . . . 5  |-  ( -g `  T )  =  (
-g `  T )
217, 16, 20ghmsub 13321 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( ( F `  U ) ( -g `  T ) ( F `
 V ) ) )
2221eqeq1d 2202 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  ( U  .-  V ) )  =  ( 0g `  T )  <->  ( ( F `  U )
( -g `  T ) ( F `  V
) )  =  ( 0g `  T ) ) )
2319, 22bitr3d 190 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( ( U  .-  V )  e.  B  /\  ( F `  ( U  .-  V ) )  =  ( 0g `  T ) )  <->  ( ( F `  U )
( -g `  T ) ( F `  V
) )  =  ( 0g `  T ) ) )
24 ghmgrp2 13316 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
25243ad2ant1 1020 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  T  e.  Grp )
2693ad2ant1 1020 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  F : B --> ( Base `  T
) )
27 simp2 1000 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  U  e.  B )
2826, 27ffvelcdmd 5694 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  U )  e.  ( Base `  T
) )
29 simp3 1001 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  V  e.  B )
3026, 29ffvelcdmd 5694 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  V )  e.  ( Base `  T
) )
31 eqid 2193 . . . 4  |-  ( 0g
`  T )  =  ( 0g `  T
)
328, 31, 20grpsubeq0 13158 . . 3  |-  ( ( T  e.  Grp  /\  ( F `  U )  e.  ( Base `  T
)  /\  ( F `  V )  e.  (
Base `  T )
)  ->  ( (
( F `  U
) ( -g `  T
) ( F `  V ) )  =  ( 0g `  T
)  <->  ( F `  U )  =  ( F `  V ) ) )
3325, 28, 30, 32syl3anc 1249 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( ( F `  U ) ( -g `  T ) ( F `
 V ) )  =  ( 0g `  T )  <->  ( F `  U )  =  ( F `  V ) ) )
3414, 23, 333bitrrd 215 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
)  =  ( F `
 V )  <->  ( U  .-  V )  e.  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {csn 3618   `'ccnv 4658   "cima 4662    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918   Basecbs 12618   0gc0g 12867   Grpcgrp 13072   -gcsg 13074    GrpHom cghm 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-ghm 13311
This theorem is referenced by:  kerf1ghm  13344
  Copyright terms: Public domain W3C validator