ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmid Unicode version

Theorem ghmid 13772
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmid.y  |-  Y  =  ( 0g `  S
)
ghmid.z  |-  .0.  =  ( 0g `  T )
Assertion
Ref Expression
ghmid  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  Y )  =  .0.  )

Proof of Theorem ghmid
StepHypRef Expression
1 ghmgrp1 13768 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
2 eqid 2229 . . . . . . 7  |-  ( Base `  S )  =  (
Base `  S )
3 ghmid.y . . . . . . 7  |-  Y  =  ( 0g `  S
)
42, 3grpidcl 13548 . . . . . 6  |-  ( S  e.  Grp  ->  Y  e.  ( Base `  S
) )
51, 4syl 14 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  Y  e.  ( Base `  S )
)
6 eqid 2229 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
7 eqid 2229 . . . . . 6  |-  ( +g  `  T )  =  ( +g  `  T )
82, 6, 7ghmlin 13771 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  Y  e.  ( Base `  S
)  /\  Y  e.  ( Base `  S )
)  ->  ( F `  ( Y ( +g  `  S ) Y ) )  =  ( ( F `  Y ) ( +g  `  T
) ( F `  Y ) ) )
95, 5, 8mpd3an23 1373 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( Y ( +g  `  S ) Y ) )  =  ( ( F `  Y ) ( +g  `  T
) ( F `  Y ) ) )
102, 6, 3grplid 13550 . . . . . 6  |-  ( ( S  e.  Grp  /\  Y  e.  ( Base `  S ) )  -> 
( Y ( +g  `  S ) Y )  =  Y )
111, 5, 10syl2anc 411 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( Y
( +g  `  S ) Y )  =  Y )
1211fveq2d 5627 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( Y ( +g  `  S ) Y ) )  =  ( F `
 Y ) )
139, 12eqtr3d 2264 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( ( F `  Y )
( +g  `  T ) ( F `  Y
) )  =  ( F `  Y ) )
14 ghmgrp2 13769 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
15 eqid 2229 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
162, 15ghmf 13770 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
1716, 5ffvelcdmd 5764 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  Y )  e.  (
Base `  T )
)
18 ghmid.z . . . . 5  |-  .0.  =  ( 0g `  T )
1915, 7, 18grpid 13558 . . . 4  |-  ( ( T  e.  Grp  /\  ( F `  Y )  e.  ( Base `  T
) )  ->  (
( ( F `  Y ) ( +g  `  T ) ( F `
 Y ) )  =  ( F `  Y )  <->  .0.  =  ( F `  Y ) ) )
2014, 17, 19syl2anc 411 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( (
( F `  Y
) ( +g  `  T
) ( F `  Y ) )  =  ( F `  Y
)  <->  .0.  =  ( F `  Y )
) )
2113, 20mpbid 147 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  .0.  =  ( F `  Y ) )
2221eqcomd 2235 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  Y )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   0gc0g 13275   Grpcgrp 13519    GrpHom cghm 13763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-ghm 13764
This theorem is referenced by:  ghminv  13773  ghmmhm  13776  ghmpreima  13789  f1ghm0to0  13795  kerf1ghm  13797  zrh0  14574  zndvds0  14599
  Copyright terms: Public domain W3C validator