ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmf1 Unicode version

Theorem ghmf1 13479
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
Hypotheses
Ref Expression
f1ghm0to0.a  |-  A  =  ( Base `  R
)
f1ghm0to0.b  |-  B  =  ( Base `  S
)
f1ghm0to0.n  |-  N  =  ( 0g `  R
)
f1ghm0to0.0  |-  .0.  =  ( 0g `  S )
Assertion
Ref Expression
ghmf1  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  A. x  e.  A  ( ( F `  x )  =  .0. 
->  x  =  N
) ) )
Distinct variable groups:    x,  .0.    x, A   
x, B    x, F    x, N    x, R    x, S

Proof of Theorem ghmf1
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ghm0to0.a . . . . . 6  |-  A  =  ( Base `  R
)
2 f1ghm0to0.b . . . . . 6  |-  B  =  ( Base `  S
)
3 f1ghm0to0.n . . . . . 6  |-  N  =  ( 0g `  R
)
4 f1ghm0to0.0 . . . . . 6  |-  .0.  =  ( 0g `  S )
51, 2, 3, 4f1ghm0to0 13478 . . . . 5  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B  /\  x  e.  A )  ->  (
( F `  x
)  =  .0.  <->  x  =  N ) )
653expa 1205 . . . 4  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A
)  ->  ( ( F `  x )  =  .0.  <->  x  =  N
) )
76biimpd 144 . . 3  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  F : A -1-1-> B )  /\  x  e.  A
)  ->  ( ( F `  x )  =  .0.  ->  x  =  N ) )
87ralrimiva 2570 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : A -1-1-> B )  ->  A. x  e.  A  ( ( F `  x )  =  .0. 
->  x  =  N
) )
91, 2ghmf 13453 . . . 4  |-  ( F  e.  ( R  GrpHom  S )  ->  F : A
--> B )
109adantr 276 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  A. x  e.  A  (
( F `  x
)  =  .0.  ->  x  =  N ) )  ->  F : A --> B )
11 eqid 2196 . . . . . . . . . 10  |-  ( -g `  R )  =  (
-g `  R )
12 eqid 2196 . . . . . . . . . 10  |-  ( -g `  S )  =  (
-g `  S )
131, 11, 12ghmsub 13457 . . . . . . . . 9  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  y  e.  A  /\  z  e.  A )  ->  ( F `  ( y
( -g `  R ) z ) )  =  ( ( F `  y ) ( -g `  S ) ( F `
 z ) ) )
14133expb 1206 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  (
y  e.  A  /\  z  e.  A )
)  ->  ( F `  ( y ( -g `  R ) z ) )  =  ( ( F `  y ) ( -g `  S
) ( F `  z ) ) )
1514adantlr 477 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( F `  (
y ( -g `  R
) z ) )  =  ( ( F `
 y ) (
-g `  S )
( F `  z
) ) )
1615eqeq1d 2205 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( ( F `  ( y ( -g `  R ) z ) )  =  .0.  <->  ( ( F `  y )
( -g `  S ) ( F `  z
) )  =  .0.  ) )
17 fveqeq2 5570 . . . . . . . 8  |-  ( x  =  ( y (
-g `  R )
z )  ->  (
( F `  x
)  =  .0.  <->  ( F `  ( y ( -g `  R ) z ) )  =  .0.  )
)
18 eqeq1 2203 . . . . . . . 8  |-  ( x  =  ( y (
-g `  R )
z )  ->  (
x  =  N  <->  ( y
( -g `  R ) z )  =  N ) )
1917, 18imbi12d 234 . . . . . . 7  |-  ( x  =  ( y (
-g `  R )
z )  ->  (
( ( F `  x )  =  .0. 
->  x  =  N
)  <->  ( ( F `
 ( y (
-g `  R )
z ) )  =  .0.  ->  ( y
( -g `  R ) z )  =  N ) ) )
20 simplr 528 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  ->  A. x  e.  A  ( ( F `  x )  =  .0. 
->  x  =  N
) )
21 ghmgrp1 13451 . . . . . . . . 9  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
2221adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  A. x  e.  A  (
( F `  x
)  =  .0.  ->  x  =  N ) )  ->  R  e.  Grp )
231, 11grpsubcl 13282 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  y  e.  A  /\  z  e.  A )  ->  ( y ( -g `  R ) z )  e.  A )
24233expb 1206 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
y ( -g `  R
) z )  e.  A )
2522, 24sylan 283 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( y ( -g `  R ) z )  e.  A )
2619, 20, 25rspcdva 2873 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( ( F `  ( y ( -g `  R ) z ) )  =  .0.  ->  ( y ( -g `  R
) z )  =  N ) )
2716, 26sylbird 170 . . . . 5  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( ( ( F `
 y ) (
-g `  S )
( F `  z
) )  =  .0. 
->  ( y ( -g `  R ) z )  =  N ) )
28 ghmgrp2 13452 . . . . . . 7  |-  ( F  e.  ( R  GrpHom  S )  ->  S  e.  Grp )
2928ad2antrr 488 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  ->  S  e.  Grp )
309ad2antrr 488 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  ->  F : A --> B )
31 simprl 529 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  A )
3230, 31ffvelcdmd 5701 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( F `  y
)  e.  B )
33 simprr 531 . . . . . . 7  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  A )
3430, 33ffvelcdmd 5701 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( F `  z
)  e.  B )
352, 4, 12grpsubeq0 13288 . . . . . 6  |-  ( ( S  e.  Grp  /\  ( F `  y )  e.  B  /\  ( F `  z )  e.  B )  ->  (
( ( F `  y ) ( -g `  S ) ( F `
 z ) )  =  .0.  <->  ( F `  y )  =  ( F `  z ) ) )
3629, 32, 34, 35syl3anc 1249 . . . . 5  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( ( ( F `
 y ) (
-g `  S )
( F `  z
) )  =  .0.  <->  ( F `  y )  =  ( F `  z ) ) )
3721ad2antrr 488 . . . . . 6  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  ->  R  e.  Grp )
381, 3, 11grpsubeq0 13288 . . . . . 6  |-  ( ( R  e.  Grp  /\  y  e.  A  /\  z  e.  A )  ->  ( ( y (
-g `  R )
z )  =  N  <-> 
y  =  z ) )
3937, 31, 33, 38syl3anc 1249 . . . . 5  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( ( y (
-g `  R )
z )  =  N  <-> 
y  =  z ) )
4027, 36, 393imtr3d 202 . . . 4  |-  ( ( ( F  e.  ( R  GrpHom  S )  /\  A. x  e.  A  ( ( F `  x
)  =  .0.  ->  x  =  N ) )  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
4140ralrimivva 2579 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  A. x  e.  A  (
( F `  x
)  =  .0.  ->  x  =  N ) )  ->  A. y  e.  A  A. z  e.  A  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
42 dff13 5818 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. y  e.  A  A. z  e.  A  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
4310, 41, 42sylanbrc 417 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  A. x  e.  A  (
( F `  x
)  =  .0.  ->  x  =  N ) )  ->  F : A -1-1-> B )
448, 43impbida 596 1  |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  A. x  e.  A  ( ( F `  x )  =  .0. 
->  x  =  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   -->wf 5255   -1-1->wf1 5256   ` cfv 5259  (class class class)co 5925   Basecbs 12703   0gc0g 12958   Grpcgrp 13202   -gcsg 13204    GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-ghm 13447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator