| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmf1 | Unicode version | ||
| Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.) |
| Ref | Expression |
|---|---|
| f1ghm0to0.a |
|
| f1ghm0to0.b |
|
| f1ghm0to0.n |
|
| f1ghm0to0.0 |
|
| Ref | Expression |
|---|---|
| ghmf1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a |
. . . . . 6
| |
| 2 | f1ghm0to0.b |
. . . . . 6
| |
| 3 | f1ghm0to0.n |
. . . . . 6
| |
| 4 | f1ghm0to0.0 |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | f1ghm0to0 13478 |
. . . . 5
|
| 6 | 5 | 3expa 1205 |
. . . 4
|
| 7 | 6 | biimpd 144 |
. . 3
|
| 8 | 7 | ralrimiva 2570 |
. 2
|
| 9 | 1, 2 | ghmf 13453 |
. . . 4
|
| 10 | 9 | adantr 276 |
. . 3
|
| 11 | eqid 2196 |
. . . . . . . . . 10
| |
| 12 | eqid 2196 |
. . . . . . . . . 10
| |
| 13 | 1, 11, 12 | ghmsub 13457 |
. . . . . . . . 9
|
| 14 | 13 | 3expb 1206 |
. . . . . . . 8
|
| 15 | 14 | adantlr 477 |
. . . . . . 7
|
| 16 | 15 | eqeq1d 2205 |
. . . . . 6
|
| 17 | fveqeq2 5570 |
. . . . . . . 8
| |
| 18 | eqeq1 2203 |
. . . . . . . 8
| |
| 19 | 17, 18 | imbi12d 234 |
. . . . . . 7
|
| 20 | simplr 528 |
. . . . . . 7
| |
| 21 | ghmgrp1 13451 |
. . . . . . . . 9
| |
| 22 | 21 | adantr 276 |
. . . . . . . 8
|
| 23 | 1, 11 | grpsubcl 13282 |
. . . . . . . . 9
|
| 24 | 23 | 3expb 1206 |
. . . . . . . 8
|
| 25 | 22, 24 | sylan 283 |
. . . . . . 7
|
| 26 | 19, 20, 25 | rspcdva 2873 |
. . . . . 6
|
| 27 | 16, 26 | sylbird 170 |
. . . . 5
|
| 28 | ghmgrp2 13452 |
. . . . . . 7
| |
| 29 | 28 | ad2antrr 488 |
. . . . . 6
|
| 30 | 9 | ad2antrr 488 |
. . . . . . 7
|
| 31 | simprl 529 |
. . . . . . 7
| |
| 32 | 30, 31 | ffvelcdmd 5701 |
. . . . . 6
|
| 33 | simprr 531 |
. . . . . . 7
| |
| 34 | 30, 33 | ffvelcdmd 5701 |
. . . . . 6
|
| 35 | 2, 4, 12 | grpsubeq0 13288 |
. . . . . 6
|
| 36 | 29, 32, 34, 35 | syl3anc 1249 |
. . . . 5
|
| 37 | 21 | ad2antrr 488 |
. . . . . 6
|
| 38 | 1, 3, 11 | grpsubeq0 13288 |
. . . . . 6
|
| 39 | 37, 31, 33, 38 | syl3anc 1249 |
. . . . 5
|
| 40 | 27, 36, 39 | 3imtr3d 202 |
. . . 4
|
| 41 | 40 | ralrimivva 2579 |
. . 3
|
| 42 | dff13 5818 |
. . 3
| |
| 43 | 10, 41, 42 | sylanbrc 417 |
. 2
|
| 44 | 8, 43 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-ghm 13447 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |