| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmf1 | Unicode version | ||
| Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.) |
| Ref | Expression |
|---|---|
| f1ghm0to0.a |
|
| f1ghm0to0.b |
|
| f1ghm0to0.n |
|
| f1ghm0to0.0 |
|
| Ref | Expression |
|---|---|
| ghmf1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a |
. . . . . 6
| |
| 2 | f1ghm0to0.b |
. . . . . 6
| |
| 3 | f1ghm0to0.n |
. . . . . 6
| |
| 4 | f1ghm0to0.0 |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | f1ghm0to0 13809 |
. . . . 5
|
| 6 | 5 | 3expa 1227 |
. . . 4
|
| 7 | 6 | biimpd 144 |
. . 3
|
| 8 | 7 | ralrimiva 2603 |
. 2
|
| 9 | 1, 2 | ghmf 13784 |
. . . 4
|
| 10 | 9 | adantr 276 |
. . 3
|
| 11 | eqid 2229 |
. . . . . . . . . 10
| |
| 12 | eqid 2229 |
. . . . . . . . . 10
| |
| 13 | 1, 11, 12 | ghmsub 13788 |
. . . . . . . . 9
|
| 14 | 13 | 3expb 1228 |
. . . . . . . 8
|
| 15 | 14 | adantlr 477 |
. . . . . . 7
|
| 16 | 15 | eqeq1d 2238 |
. . . . . 6
|
| 17 | fveqeq2 5636 |
. . . . . . . 8
| |
| 18 | eqeq1 2236 |
. . . . . . . 8
| |
| 19 | 17, 18 | imbi12d 234 |
. . . . . . 7
|
| 20 | simplr 528 |
. . . . . . 7
| |
| 21 | ghmgrp1 13782 |
. . . . . . . . 9
| |
| 22 | 21 | adantr 276 |
. . . . . . . 8
|
| 23 | 1, 11 | grpsubcl 13613 |
. . . . . . . . 9
|
| 24 | 23 | 3expb 1228 |
. . . . . . . 8
|
| 25 | 22, 24 | sylan 283 |
. . . . . . 7
|
| 26 | 19, 20, 25 | rspcdva 2912 |
. . . . . 6
|
| 27 | 16, 26 | sylbird 170 |
. . . . 5
|
| 28 | ghmgrp2 13783 |
. . . . . . 7
| |
| 29 | 28 | ad2antrr 488 |
. . . . . 6
|
| 30 | 9 | ad2antrr 488 |
. . . . . . 7
|
| 31 | simprl 529 |
. . . . . . 7
| |
| 32 | 30, 31 | ffvelcdmd 5771 |
. . . . . 6
|
| 33 | simprr 531 |
. . . . . . 7
| |
| 34 | 30, 33 | ffvelcdmd 5771 |
. . . . . 6
|
| 35 | 2, 4, 12 | grpsubeq0 13619 |
. . . . . 6
|
| 36 | 29, 32, 34, 35 | syl3anc 1271 |
. . . . 5
|
| 37 | 21 | ad2antrr 488 |
. . . . . 6
|
| 38 | 1, 3, 11 | grpsubeq0 13619 |
. . . . . 6
|
| 39 | 37, 31, 33, 38 | syl3anc 1271 |
. . . . 5
|
| 40 | 27, 36, 39 | 3imtr3d 202 |
. . . 4
|
| 41 | 40 | ralrimivva 2612 |
. . 3
|
| 42 | dff13 5892 |
. . 3
| |
| 43 | 10, 41, 42 | sylanbrc 417 |
. 2
|
| 44 | 8, 43 | impbida 598 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-sbg 13538 df-ghm 13778 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |