| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmpopr2d | Unicode version | ||
| Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024.) |
| Ref | Expression |
|---|---|
| fvmpopr2d.1 |
|
| fvmpopr2d.2 |
|
| fvmpopr2d.3 |
|
| Ref | Expression |
|---|---|
| fvmpopr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6003 |
. . 3
| |
| 2 | fvmpopr2d.1 |
. . . . 5
| |
| 3 | 2 | 3ad2ant1 1042 |
. . . 4
|
| 4 | fvmpopr2d.2 |
. . . . 5
| |
| 5 | 4 | 3ad2ant1 1042 |
. . . 4
|
| 6 | 3, 5 | fveq12d 5633 |
. . 3
|
| 7 | 1, 6 | eqtr4id 2281 |
. 2
|
| 8 | nfcv 2372 |
. . . . 5
| |
| 9 | nfcv 2372 |
. . . . 5
| |
| 10 | nfcv 2372 |
. . . . . 6
| |
| 11 | nfcsb1v 3157 |
. . . . . 6
| |
| 12 | 10, 11 | nfcsbw 3161 |
. . . . 5
|
| 13 | nfcsb1v 3157 |
. . . . 5
| |
| 14 | csbeq1a 3133 |
. . . . . 6
| |
| 15 | csbeq1a 3133 |
. . . . . 6
| |
| 16 | 14, 15 | sylan9eq 2282 |
. . . . 5
|
| 17 | 8, 9, 12, 13, 16 | cbvmpo 6082 |
. . . 4
|
| 18 | 17 | oveqi 6013 |
. . 3
|
| 19 | eqidd 2230 |
. . . 4
| |
| 20 | equcom 1752 |
. . . . . . . 8
| |
| 21 | equcom 1752 |
. . . . . . . 8
| |
| 22 | 20, 21 | anbi12i 460 |
. . . . . . 7
|
| 23 | 22, 16 | sylbir 135 |
. . . . . 6
|
| 24 | 23 | eqcomd 2235 |
. . . . 5
|
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | simp2 1022 |
. . . 4
| |
| 27 | simp3 1023 |
. . . 4
| |
| 28 | fvmpopr2d.3 |
. . . 4
| |
| 29 | 19, 25, 26, 27, 28 | ovmpod 6131 |
. . 3
|
| 30 | 18, 29 | eqtrid 2274 |
. 2
|
| 31 | 7, 30 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 |
| This theorem is referenced by: mpomulcn 15234 |
| Copyright terms: Public domain | W3C validator |