| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmpopr2d | Unicode version | ||
| Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024.) |
| Ref | Expression |
|---|---|
| fvmpopr2d.1 |
|
| fvmpopr2d.2 |
|
| fvmpopr2d.3 |
|
| Ref | Expression |
|---|---|
| fvmpopr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5954 |
. . 3
| |
| 2 | fvmpopr2d.1 |
. . . . 5
| |
| 3 | 2 | 3ad2ant1 1021 |
. . . 4
|
| 4 | fvmpopr2d.2 |
. . . . 5
| |
| 5 | 4 | 3ad2ant1 1021 |
. . . 4
|
| 6 | 3, 5 | fveq12d 5590 |
. . 3
|
| 7 | 1, 6 | eqtr4id 2258 |
. 2
|
| 8 | nfcv 2349 |
. . . . 5
| |
| 9 | nfcv 2349 |
. . . . 5
| |
| 10 | nfcv 2349 |
. . . . . 6
| |
| 11 | nfcsb1v 3127 |
. . . . . 6
| |
| 12 | 10, 11 | nfcsbw 3131 |
. . . . 5
|
| 13 | nfcsb1v 3127 |
. . . . 5
| |
| 14 | csbeq1a 3103 |
. . . . . 6
| |
| 15 | csbeq1a 3103 |
. . . . . 6
| |
| 16 | 14, 15 | sylan9eq 2259 |
. . . . 5
|
| 17 | 8, 9, 12, 13, 16 | cbvmpo 6031 |
. . . 4
|
| 18 | 17 | oveqi 5964 |
. . 3
|
| 19 | eqidd 2207 |
. . . 4
| |
| 20 | equcom 1730 |
. . . . . . . 8
| |
| 21 | equcom 1730 |
. . . . . . . 8
| |
| 22 | 20, 21 | anbi12i 460 |
. . . . . . 7
|
| 23 | 22, 16 | sylbir 135 |
. . . . . 6
|
| 24 | 23 | eqcomd 2212 |
. . . . 5
|
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | simp2 1001 |
. . . 4
| |
| 27 | simp3 1002 |
. . . 4
| |
| 28 | fvmpopr2d.3 |
. . . 4
| |
| 29 | 19, 25, 26, 27, 28 | ovmpod 6080 |
. . 3
|
| 30 | 18, 29 | eqtrid 2251 |
. 2
|
| 31 | 7, 30 | eqtr3d 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 |
| This theorem is referenced by: mpomulcn 15082 |
| Copyright terms: Public domain | W3C validator |