ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpopr2d Unicode version

Theorem fvmpopr2d 6056
Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
fvmpopr2d.1  |-  ( ph  ->  F  =  ( a  e.  A ,  b  e.  B  |->  C ) )
fvmpopr2d.2  |-  ( ph  ->  P  =  <. a ,  b >. )
fvmpopr2d.3  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
Assertion
Ref Expression
fvmpopr2d  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  ( F `  P )  =  C )
Distinct variable groups:    A, a, b    B, a, b
Allowed substitution hints:    ph( a, b)    C( a, b)    P( a, b)    F( a, b)    V( a, b)

Proof of Theorem fvmpopr2d
Dummy variables  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5922 . . 3  |-  ( a ( a  e.  A ,  b  e.  B  |->  C ) b )  =  ( ( a  e.  A ,  b  e.  B  |->  C ) `
 <. a ,  b
>. )
2 fvmpopr2d.1 . . . . 5  |-  ( ph  ->  F  =  ( a  e.  A ,  b  e.  B  |->  C ) )
323ad2ant1 1020 . . . 4  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  F  =  ( a  e.  A ,  b  e.  B  |->  C ) )
4 fvmpopr2d.2 . . . . 5  |-  ( ph  ->  P  =  <. a ,  b >. )
543ad2ant1 1020 . . . 4  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  P  =  <. a ,  b >.
)
63, 5fveq12d 5562 . . 3  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  ( F `  P )  =  ( ( a  e.  A ,  b  e.  B  |->  C ) `  <. a ,  b >. )
)
71, 6eqtr4id 2245 . 2  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  ( a
( a  e.  A ,  b  e.  B  |->  C ) b )  =  ( F `  P ) )
8 nfcv 2336 . . . . 5  |-  F/_ c C
9 nfcv 2336 . . . . 5  |-  F/_ d C
10 nfcv 2336 . . . . . 6  |-  F/_ a
d
11 nfcsb1v 3114 . . . . . 6  |-  F/_ a [_ c  /  a ]_ C
1210, 11nfcsbw 3118 . . . . 5  |-  F/_ a [_ d  /  b ]_ [_ c  /  a ]_ C
13 nfcsb1v 3114 . . . . 5  |-  F/_ b [_ d  /  b ]_ [_ c  /  a ]_ C
14 csbeq1a 3090 . . . . . 6  |-  ( a  =  c  ->  C  =  [_ c  /  a ]_ C )
15 csbeq1a 3090 . . . . . 6  |-  ( b  =  d  ->  [_ c  /  a ]_ C  =  [_ d  /  b ]_ [_ c  /  a ]_ C )
1614, 15sylan9eq 2246 . . . . 5  |-  ( ( a  =  c  /\  b  =  d )  ->  C  =  [_ d  /  b ]_ [_ c  /  a ]_ C
)
178, 9, 12, 13, 16cbvmpo 5998 . . . 4  |-  ( a  e.  A ,  b  e.  B  |->  C )  =  ( c  e.  A ,  d  e.  B  |->  [_ d  /  b ]_ [_ c  /  a ]_ C )
1817oveqi 5932 . . 3  |-  ( a ( a  e.  A ,  b  e.  B  |->  C ) b )  =  ( a ( c  e.  A , 
d  e.  B  |->  [_ d  /  b ]_ [_ c  /  a ]_ C
) b )
19 eqidd 2194 . . . 4  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  ( c  e.  A ,  d  e.  B  |->  [_ d  /  b ]_ [_ c  /  a ]_ C )  =  ( c  e.  A , 
d  e.  B  |->  [_ d  /  b ]_ [_ c  /  a ]_ C
) )
20 equcom 1717 . . . . . . . 8  |-  ( a  =  c  <->  c  =  a )
21 equcom 1717 . . . . . . . 8  |-  ( b  =  d  <->  d  =  b )
2220, 21anbi12i 460 . . . . . . 7  |-  ( ( a  =  c  /\  b  =  d )  <->  ( c  =  a  /\  d  =  b )
)
2322, 16sylbir 135 . . . . . 6  |-  ( ( c  =  a  /\  d  =  b )  ->  C  =  [_ d  /  b ]_ [_ c  /  a ]_ C
)
2423eqcomd 2199 . . . . 5  |-  ( ( c  =  a  /\  d  =  b )  ->  [_ d  /  b ]_ [_ c  /  a ]_ C  =  C
)
2524adantl 277 . . . 4  |-  ( ( ( ph  /\  a  e.  A  /\  b  e.  B )  /\  (
c  =  a  /\  d  =  b )
)  ->  [_ d  / 
b ]_ [_ c  / 
a ]_ C  =  C )
26 simp2 1000 . . . 4  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  a  e.  A )
27 simp3 1001 . . . 4  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  b  e.  B )
28 fvmpopr2d.3 . . . 4  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  C  e.  V )
2919, 25, 26, 27, 28ovmpod 6047 . . 3  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  ( a
( c  e.  A ,  d  e.  B  |-> 
[_ d  /  b ]_ [_ c  /  a ]_ C ) b )  =  C )
3018, 29eqtrid 2238 . 2  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  ( a
( a  e.  A ,  b  e.  B  |->  C ) b )  =  C )
317, 30eqtr3d 2228 1  |-  ( (
ph  /\  a  e.  A  /\  b  e.  B
)  ->  ( F `  P )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   [_csb 3081   <.cop 3622   ` cfv 5255  (class class class)co 5919    e. cmpo 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924
This theorem is referenced by:  mpomulcn  14745
  Copyright terms: Public domain W3C validator