ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpopr2d GIF version

Theorem fvmpopr2d 6112
Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
fvmpopr2d.1 (𝜑𝐹 = (𝑎𝐴, 𝑏𝐵𝐶))
fvmpopr2d.2 (𝜑𝑃 = ⟨𝑎, 𝑏⟩)
fvmpopr2d.3 ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
Assertion
Ref Expression
fvmpopr2d ((𝜑𝑎𝐴𝑏𝐵) → (𝐹𝑃) = 𝐶)
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑃(𝑎,𝑏)   𝐹(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem fvmpopr2d
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5977 . . 3 (𝑎(𝑎𝐴, 𝑏𝐵𝐶)𝑏) = ((𝑎𝐴, 𝑏𝐵𝐶)‘⟨𝑎, 𝑏⟩)
2 fvmpopr2d.1 . . . . 5 (𝜑𝐹 = (𝑎𝐴, 𝑏𝐵𝐶))
323ad2ant1 1023 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝐹 = (𝑎𝐴, 𝑏𝐵𝐶))
4 fvmpopr2d.2 . . . . 5 (𝜑𝑃 = ⟨𝑎, 𝑏⟩)
543ad2ant1 1023 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝑃 = ⟨𝑎, 𝑏⟩)
63, 5fveq12d 5610 . . 3 ((𝜑𝑎𝐴𝑏𝐵) → (𝐹𝑃) = ((𝑎𝐴, 𝑏𝐵𝐶)‘⟨𝑎, 𝑏⟩))
71, 6eqtr4id 2261 . 2 ((𝜑𝑎𝐴𝑏𝐵) → (𝑎(𝑎𝐴, 𝑏𝐵𝐶)𝑏) = (𝐹𝑃))
8 nfcv 2352 . . . . 5 𝑐𝐶
9 nfcv 2352 . . . . 5 𝑑𝐶
10 nfcv 2352 . . . . . 6 𝑎𝑑
11 nfcsb1v 3137 . . . . . 6 𝑎𝑐 / 𝑎𝐶
1210, 11nfcsbw 3141 . . . . 5 𝑎𝑑 / 𝑏𝑐 / 𝑎𝐶
13 nfcsb1v 3137 . . . . 5 𝑏𝑑 / 𝑏𝑐 / 𝑎𝐶
14 csbeq1a 3113 . . . . . 6 (𝑎 = 𝑐𝐶 = 𝑐 / 𝑎𝐶)
15 csbeq1a 3113 . . . . . 6 (𝑏 = 𝑑𝑐 / 𝑎𝐶 = 𝑑 / 𝑏𝑐 / 𝑎𝐶)
1614, 15sylan9eq 2262 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝐶 = 𝑑 / 𝑏𝑐 / 𝑎𝐶)
178, 9, 12, 13, 16cbvmpo 6054 . . . 4 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶)
1817oveqi 5987 . . 3 (𝑎(𝑎𝐴, 𝑏𝐵𝐶)𝑏) = (𝑎(𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶)𝑏)
19 eqidd 2210 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → (𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶) = (𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶))
20 equcom 1732 . . . . . . . 8 (𝑎 = 𝑐𝑐 = 𝑎)
21 equcom 1732 . . . . . . . 8 (𝑏 = 𝑑𝑑 = 𝑏)
2220, 21anbi12i 460 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) ↔ (𝑐 = 𝑎𝑑 = 𝑏))
2322, 16sylbir 135 . . . . . 6 ((𝑐 = 𝑎𝑑 = 𝑏) → 𝐶 = 𝑑 / 𝑏𝑐 / 𝑎𝐶)
2423eqcomd 2215 . . . . 5 ((𝑐 = 𝑎𝑑 = 𝑏) → 𝑑 / 𝑏𝑐 / 𝑎𝐶 = 𝐶)
2524adantl 277 . . . 4 (((𝜑𝑎𝐴𝑏𝐵) ∧ (𝑐 = 𝑎𝑑 = 𝑏)) → 𝑑 / 𝑏𝑐 / 𝑎𝐶 = 𝐶)
26 simp2 1003 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝑎𝐴)
27 simp3 1004 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝑏𝐵)
28 fvmpopr2d.3 . . . 4 ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
2919, 25, 26, 27, 28ovmpod 6103 . . 3 ((𝜑𝑎𝐴𝑏𝐵) → (𝑎(𝑐𝐴, 𝑑𝐵𝑑 / 𝑏𝑐 / 𝑎𝐶)𝑏) = 𝐶)
3018, 29eqtrid 2254 . 2 ((𝜑𝑎𝐴𝑏𝐵) → (𝑎(𝑎𝐴, 𝑏𝐵𝐶)𝑏) = 𝐶)
317, 30eqtr3d 2244 1 ((𝜑𝑎𝐴𝑏𝐵) → (𝐹𝑃) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  csb 3104  cop 3649  cfv 5294  (class class class)co 5974  cmpo 5976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979
This theorem is referenced by:  mpomulcn  15205
  Copyright terms: Public domain W3C validator