| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpomulcn | Unicode version | ||
| Description: Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| mpomulcn.j |
|
| Ref | Expression |
|---|---|
| mpomulcn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpomulcn.j |
. . 3
| |
| 2 | 1 | cnfldtopn 15221 |
. 2
|
| 3 | mpomulf 8144 |
. 2
| |
| 4 | mulcn2 11831 |
. . 3
| |
| 5 | simplr 528 |
. . . . . . . . . . . 12
| |
| 6 | simplll 533 |
. . . . . . . . . . . . 13
| |
| 7 | simplr 528 |
. . . . . . . . . . . . . . . . 17
| |
| 8 | 7 | fvoveq1d 6029 |
. . . . . . . . . . . . . . . 16
|
| 9 | 8 | breq1d 4093 |
. . . . . . . . . . . . . . 15
|
| 10 | simpr 110 |
. . . . . . . . . . . . . . . . 17
| |
| 11 | 10 | fvoveq1d 6029 |
. . . . . . . . . . . . . . . 16
|
| 12 | 11 | breq1d 4093 |
. . . . . . . . . . . . . . 15
|
| 13 | 9, 12 | anbi12d 473 |
. . . . . . . . . . . . . 14
|
| 14 | simplr 528 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 15 | 14 | eqcomd 2235 |
. . . . . . . . . . . . . . . . . . . 20
|
| 16 | simpr 110 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 17 | 16 | eqcomd 2235 |
. . . . . . . . . . . . . . . . . . . 20
|
| 18 | 15, 17 | oveq12d 6025 |
. . . . . . . . . . . . . . . . . . 19
|
| 19 | simplr 528 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 20 | simplll 533 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 21 | tru 1399 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 22 | oveq1 6014 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
| |
| 23 | oveq2 6015 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
| |
| 24 | 22, 23 | cbvmpov 6090 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
|
| 25 | 24 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . 24
|
| 26 | eqidd 2230 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 27 | mulcl 8134 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
| |
| 28 | 27 | 3adant1 1039 |
. . . . . . . . . . . . . . . . . . . . . . . 24
|
| 29 | 25, 26, 28 | fvmpopr2d 6147 |
. . . . . . . . . . . . . . . . . . . . . . 23
|
| 30 | 29 | eqcomd 2235 |
. . . . . . . . . . . . . . . . . . . . . 22
|
| 31 | 21, 30 | mp3an1 1358 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 32 | df-ov 6010 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 33 | 31, 32 | eqtr4di 2280 |
. . . . . . . . . . . . . . . . . . . 20
|
| 34 | 19, 20, 33 | syl2an2r 597 |
. . . . . . . . . . . . . . . . . . 19
|
| 35 | 18, 34 | eqtr3d 2264 |
. . . . . . . . . . . . . . . . . 18
|
| 36 | 35 | adantllr 481 |
. . . . . . . . . . . . . . . . 17
|
| 37 | df-ov 6010 |
. . . . . . . . . . . . . . . . . . 19
| |
| 38 | oveq1 6014 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 39 | oveq2 6015 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 40 | 38, 39 | cbvmpov 6090 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 41 | 40 | a1i 9 |
. . . . . . . . . . . . . . . . . . . 20
|
| 42 | eqidd 2230 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 43 | mulcl 8134 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 44 | 43 | 3adant1 1039 |
. . . . . . . . . . . . . . . . . . . 20
|
| 45 | 41, 42, 44 | fvmpopr2d 6147 |
. . . . . . . . . . . . . . . . . . 19
|
| 46 | 37, 45 | eqtr2id 2275 |
. . . . . . . . . . . . . . . . . 18
|
| 47 | 46 | ad3antlr 493 |
. . . . . . . . . . . . . . . . 17
|
| 48 | 36, 47 | oveq12d 6025 |
. . . . . . . . . . . . . . . 16
|
| 49 | 48 | fveq2d 5633 |
. . . . . . . . . . . . . . 15
|
| 50 | 49 | breq1d 4093 |
. . . . . . . . . . . . . 14
|
| 51 | 13, 50 | imbi12d 234 |
. . . . . . . . . . . . 13
|
| 52 | 6, 51 | rspcdv 2910 |
. . . . . . . . . . . 12
|
| 53 | 5, 52 | rspcimdv 2908 |
. . . . . . . . . . 11
|
| 54 | 53 | expimpd 363 |
. . . . . . . . . 10
|
| 55 | 54 | ex 115 |
. . . . . . . . 9
|
| 56 | 55 | com13 80 |
. . . . . . . 8
|
| 57 | 56 | ralrimdv 2609 |
. . . . . . 7
|
| 58 | 57 | ex 115 |
. . . . . 6
|
| 59 | 58 | ralrimdv 2609 |
. . . . 5
|
| 60 | 59 | reximdv 2631 |
. . . 4
|
| 61 | 60 | reximdv 2631 |
. . 3
|
| 62 | 4, 61 | mpd 13 |
. 2
|
| 63 | 2, 3, 62 | addcncntoplem 15243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-map 6805 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-fz 10213 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-starv 13133 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-rest 13282 df-topn 13283 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 df-top 14680 df-topon 14693 df-bases 14725 df-cn 14870 df-cnp 14871 df-tx 14935 |
| This theorem is referenced by: expcn 15251 plycn 15444 |
| Copyright terms: Public domain | W3C validator |