ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulcn Unicode version

Theorem mpomulcn 15205
Description: Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
mpomulcn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
mpomulcn  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  ( ( J 
tX  J )  Cn  J )
Distinct variable group:    x, y
Allowed substitution hints:    J( x, y)

Proof of Theorem mpomulcn
Dummy variables  a  b  c  u  v  w  z  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpomulcn.j . . 3  |-  J  =  ( TopOpen ` fld )
21cnfldtopn 15178 . 2  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
3 mpomulf 8104 . 2  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) : ( CC  X.  CC ) --> CC
4 mulcn2 11789 . . 3  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. z  e.  RR+  E. w  e.  RR+  A. d  e.  CC  A. e  e.  CC  (
( ( abs `  (
d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  <  w )  -> 
( abs `  (
( d  x.  e
)  -  ( b  x.  c ) ) )  <  a ) )
5 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( v  e.  CC  /\  u  e.  CC )  /\  ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  ->  u  e.  CC )
6 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  ->  v  e.  CC )
7 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  d  =  u )
87fvoveq1d 5996 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( abs `  ( d  -  b
) )  =  ( abs `  ( u  -  b ) ) )
98breq1d 4072 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( ( abs `  ( d  -  b ) )  < 
z  <->  ( abs `  (
u  -  b ) )  <  z ) )
10 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  e  =  v )
1110fvoveq1d 5996 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( abs `  ( e  -  c
) )  =  ( abs `  ( v  -  c ) ) )
1211breq1d 4072 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( ( abs `  ( e  -  c ) )  < 
w  <->  ( abs `  (
v  -  c ) )  <  w ) )
139, 12anbi12d 473 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( (
( abs `  (
d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  <  w )  <->  ( ( abs `  ( u  -  b ) )  < 
z  /\  ( abs `  ( v  -  c
) )  <  w
) ) )
14 simplr 528 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  /\  e  =  v )  -> 
d  =  u )
1514eqcomd 2215 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  /\  e  =  v )  ->  u  =  d )
16 simpr 110 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  /\  e  =  v )  -> 
e  =  v )
1716eqcomd 2215 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  /\  e  =  v )  -> 
v  =  e )
1815, 17oveq12d 5992 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  /\  e  =  v )  -> 
( u  x.  v
)  =  ( d  x.  e ) )
19 simplr 528 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  ->  u  e.  CC )
20 simplll 533 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  /\  e  =  v )  -> 
v  e.  CC )
21 tru 1379 . . . . . . . . . . . . . . . . . . . . . 22  |- T.
22 oveq1 5981 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  u  ->  (
x  x.  y )  =  ( u  x.  y ) )
23 oveq2 5982 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  v  ->  (
u  x.  y )  =  ( u  x.  v ) )
2422, 23cbvmpov 6055 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
2524a1i 9 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( T. 
->  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  =  ( u  e.  CC , 
v  e.  CC  |->  ( u  x.  v ) ) )
26 eqidd 2210 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( T. 
->  <. u ,  v
>.  =  <. u ,  v >. )
27 mulcl 8094 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  e.  CC )
28273adant1 1020 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( T.  /\  u  e.  CC  /\  v  e.  CC )  ->  (
u  x.  v )  e.  CC )
2925, 26, 28fvmpopr2d 6112 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( T.  /\  u  e.  CC  /\  v  e.  CC )  ->  (
( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) `  <. u ,  v >. )  =  ( u  x.  v ) )
3029eqcomd 2215 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( T.  /\  u  e.  CC  /\  v  e.  CC )  ->  (
u  x.  v )  =  ( ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) `
 <. u ,  v
>. ) )
3121, 30mp3an1 1339 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  =  ( ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) `  <. u ,  v >. )
)
32 df-ov 5977 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) v )  =  ( ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) `
 <. u ,  v
>. )
3331, 32eqtr4di 2260 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  =  ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) v ) )
3419, 20, 33syl2an2r 597 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  /\  e  =  v )  -> 
( u  x.  v
)  =  ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) v ) )
3518, 34eqtr3d 2244 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  d  =  u )  /\  e  =  v )  -> 
( d  x.  e
)  =  ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) v ) )
3635adantllr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( d  x.  e )  =  ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v ) )
37 df-ov 5977 . . . . . . . . . . . . . . . . . . 19  |-  ( b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) c )  =  ( ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) `
 <. b ,  c
>. )
38 oveq1 5981 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  b  ->  (
x  x.  y )  =  ( b  x.  y ) )
39 oveq2 5982 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  c  ->  (
b  x.  y )  =  ( b  x.  c ) )
4038, 39cbvmpov 6055 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  ( b  e.  CC ,  c  e.  CC  |->  ( b  x.  c ) )
4140a1i 9 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  RR+  ->  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  ( b  e.  CC ,  c  e.  CC  |->  ( b  x.  c ) ) )
42 eqidd 2210 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  RR+  ->  <. b ,  c >.  =  <. b ,  c >. )
43 mulcl 8094 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  CC  /\  c  e.  CC )  ->  ( b  x.  c
)  e.  CC )
44433adant1 1020 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  (
b  x.  c )  e.  CC )
4541, 42, 44fvmpopr2d 6112 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  (
( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) `  <. b ,  c >. )  =  ( b  x.  c ) )
4637, 45eqtr2id 2255 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  (
b  x.  c )  =  ( b ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) c ) )
4746ad3antlr 493 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( b  x.  c )  =  ( b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) )
4836, 47oveq12d 5992 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( (
d  x.  e )  -  ( b  x.  c ) )  =  ( ( u ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) v )  -  ( b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )
4948fveq2d 5607 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( abs `  ( ( d  x.  e )  -  (
b  x.  c ) ) )  =  ( abs `  ( ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  ( b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) c ) ) ) )
5049breq1d 4072 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( ( abs `  ( ( d  x.  e )  -  ( b  x.  c
) ) )  < 
a  <->  ( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) )
5113, 50imbi12d 234 . . . . . . . . . . . . 13  |-  ( ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  /\  e  =  v
)  ->  ( (
( ( abs `  (
d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  <  w )  -> 
( abs `  (
( d  x.  e
)  -  ( b  x.  c ) ) )  <  a )  <-> 
( ( ( abs `  ( u  -  b
) )  <  z  /\  ( abs `  (
v  -  c ) )  <  w )  ->  ( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) ) )
526, 51rspcdv 2890 . . . . . . . . . . . 12  |-  ( ( ( ( v  e.  CC  /\  u  e.  CC )  /\  (
a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  /\  d  =  u )  ->  ( A. e  e.  CC  ( ( ( abs `  ( d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  < 
w )  ->  ( abs `  ( ( d  x.  e )  -  ( b  x.  c
) ) )  < 
a )  ->  (
( ( abs `  (
u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  <  w )  -> 
( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) ) )
535, 52rspcimdv 2888 . . . . . . . . . . 11  |-  ( ( ( v  e.  CC  /\  u  e.  CC )  /\  ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC ) )  ->  ( A. d  e.  CC  A. e  e.  CC  ( ( ( abs `  ( d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  < 
w )  ->  ( abs `  ( ( d  x.  e )  -  ( b  x.  c
) ) )  < 
a )  ->  (
( ( abs `  (
u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  <  w )  -> 
( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) ) )
5453expimpd 363 . . . . . . . . . 10  |-  ( ( v  e.  CC  /\  u  e.  CC )  ->  ( ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  /\  A. d  e.  CC  A. e  e.  CC  ( ( ( abs `  ( d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  < 
w )  ->  ( abs `  ( ( d  x.  e )  -  ( b  x.  c
) ) )  < 
a ) )  -> 
( ( ( abs `  ( u  -  b
) )  <  z  /\  ( abs `  (
v  -  c ) )  <  w )  ->  ( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) ) )
5554ex 115 . . . . . . . . 9  |-  ( v  e.  CC  ->  (
u  e.  CC  ->  ( ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  /\  A. d  e.  CC  A. e  e.  CC  ( ( ( abs `  ( d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  < 
w )  ->  ( abs `  ( ( d  x.  e )  -  ( b  x.  c
) ) )  < 
a ) )  -> 
( ( ( abs `  ( u  -  b
) )  <  z  /\  ( abs `  (
v  -  c ) )  <  w )  ->  ( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) ) ) )
5655com13 80 . . . . . . . 8  |-  ( ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  /\  A. d  e.  CC  A. e  e.  CC  (
( ( abs `  (
d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  <  w )  -> 
( abs `  (
( d  x.  e
)  -  ( b  x.  c ) ) )  <  a ) )  ->  ( u  e.  CC  ->  ( v  e.  CC  ->  ( (
( abs `  (
u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  <  w )  -> 
( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) ) ) )
5756ralrimdv 2589 . . . . . . 7  |-  ( ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  /\  A. d  e.  CC  A. e  e.  CC  (
( ( abs `  (
d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  <  w )  -> 
( abs `  (
( d  x.  e
)  -  ( b  x.  c ) ) )  <  a ) )  ->  ( u  e.  CC  ->  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  < 
w )  ->  ( abs `  ( ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) v )  -  ( b ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  <  a ) ) )
5857ex 115 . . . . . 6  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  ( A. d  e.  CC  A. e  e.  CC  (
( ( abs `  (
d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  <  w )  -> 
( abs `  (
( d  x.  e
)  -  ( b  x.  c ) ) )  <  a )  ->  ( u  e.  CC  ->  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  < 
w )  ->  ( abs `  ( ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) v )  -  ( b ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  <  a ) ) ) )
5958ralrimdv 2589 . . . . 5  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  ( A. d  e.  CC  A. e  e.  CC  (
( ( abs `  (
d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  <  w )  -> 
( abs `  (
( d  x.  e
)  -  ( b  x.  c ) ) )  <  a )  ->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  <  w )  -> 
( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) ) )
6059reximdv 2611 . . . 4  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  ( E. w  e.  RR+  A. d  e.  CC  A. e  e.  CC  ( ( ( abs `  ( d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  < 
w )  ->  ( abs `  ( ( d  x.  e )  -  ( b  x.  c
) ) )  < 
a )  ->  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  < 
w )  ->  ( abs `  ( ( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) ) v )  -  ( b ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  <  a ) ) )
6160reximdv 2611 . . 3  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  ( E. z  e.  RR+  E. w  e.  RR+  A. d  e.  CC  A. e  e.  CC  ( ( ( abs `  ( d  -  b ) )  <  z  /\  ( abs `  ( e  -  c ) )  < 
w )  ->  ( abs `  ( ( d  x.  e )  -  ( b  x.  c
) ) )  < 
a )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  <  w )  -> 
( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) ) )
624, 61mpd 13 . 2  |-  ( ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  b ) )  <  z  /\  ( abs `  ( v  -  c ) )  <  w )  -> 
( abs `  (
( u ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) v )  -  (
b ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) c ) ) )  < 
a ) )
632, 3, 62addcncntoplem 15200 1  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  ( ( J 
tX  J )  Cn  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 983    = wceq 1375   T. wtru 1376    e. wcel 2180   A.wral 2488   E.wrex 2489   <.cop 3649   class class class wbr 4062   ` cfv 5294  (class class class)co 5974    e. cmpo 5976   CCcc 7965    x. cmul 7972    < clt 8149    - cmin 8285   RR+crp 9817   abscabs 11474   TopOpenctopn 13239  ℂfldccnfld 14485    Cn ccn 14824    tX ctx 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-fz 10173  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-rest 13240  df-topn 13241  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-tx 14892
This theorem is referenced by:  expcn  15208  plycn  15401
  Copyright terms: Public domain W3C validator