ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzssuz Unicode version

Theorem fzssuz 9796
Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.)
Assertion
Ref Expression
fzssuz  |-  ( M ... N )  C_  ( ZZ>= `  M )

Proof of Theorem fzssuz
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzuz 9753 . 2  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
21ssriv 3069 1  |-  ( M ... N )  C_  ( ZZ>= `  M )
Colors of variables: wff set class
Syntax hints:    C_ wss 3039   ` cfv 5091  (class class class)co 5740   ZZ>=cuz 9278   ...cfz 9741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420  ax-cnex 7675  ax-resscn 7676
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-neg 7900  df-z 9009  df-uz 9279  df-fz 9742
This theorem is referenced by:  fzssnn  9799  fzossnn0  9903  seq3split  10203  seq3caopr2  10206  summodclem2a  11101  fisumss  11112  fsumsersdc  11115  isumclim3  11143  binomlem  11203  isprm3  11706  2prm  11715
  Copyright terms: Public domain W3C validator