ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsn Unicode version

Theorem fzsn 10036
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )

Proof of Theorem fzsn
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 10005 . . . 4  |-  ( k  e.  ( M ... M )  ->  k  =  M )
2 elfz3 10004 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  ( M ... M
) )
3 eleq1 2238 . . . . 5  |-  ( k  =  M  ->  (
k  e.  ( M ... M )  <->  M  e.  ( M ... M ) ) )
42, 3syl5ibrcom 157 . . . 4  |-  ( M  e.  ZZ  ->  (
k  =  M  -> 
k  e.  ( M ... M ) ) )
51, 4impbid2 143 . . 3  |-  ( M  e.  ZZ  ->  (
k  e.  ( M ... M )  <->  k  =  M ) )
6 velsn 3606 . . 3  |-  ( k  e.  { M }  <->  k  =  M )
75, 6bitr4di 198 . 2  |-  ( M  e.  ZZ  ->  (
k  e.  ( M ... M )  <->  k  e.  { M } ) )
87eqrdv 2173 1  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   {csn 3589  (class class class)co 5865   ZZcz 9226   ...cfz 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltirr 7898  ax-pre-apti 7901
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-neg 8105  df-z 9227  df-uz 9502  df-fz 9980
This theorem is referenced by:  fzsuc  10039  fzpred  10040  fzpr  10047  fzsuc2  10049  fz0sn  10091  1fv  10109  fzosn  10175  exfzdc  10210  uzsinds  10412  hashsng  10746  sumsnf  11385  fsum1  11388  fsumm1  11392  fsum1p  11394  prodsnf  11568  fprod1  11570  fprod1p  11575  fprodabs  11592  ef0lem  11636  phi1  12186  strle1g  12530
  Copyright terms: Public domain W3C validator