Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzsn | Unicode version |
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fzsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1eq 10005 | . . . 4 | |
2 | elfz3 10004 | . . . . 5 | |
3 | eleq1 2238 | . . . . 5 | |
4 | 2, 3 | syl5ibrcom 157 | . . . 4 |
5 | 1, 4 | impbid2 143 | . . 3 |
6 | velsn 3606 | . . 3 | |
7 | 5, 6 | bitr4di 198 | . 2 |
8 | 7 | eqrdv 2173 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 csn 3589 (class class class)co 5865 cz 9226 cfz 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltirr 7898 ax-pre-apti 7901 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-neg 8105 df-z 9227 df-uz 9502 df-fz 9980 |
This theorem is referenced by: fzsuc 10039 fzpred 10040 fzpr 10047 fzsuc2 10049 fz0sn 10091 1fv 10109 fzosn 10175 exfzdc 10210 uzsinds 10412 hashsng 10746 sumsnf 11385 fsum1 11388 fsumm1 11392 fsum1p 11394 prodsnf 11568 fprod1 11570 fprod1p 11575 fprodabs 11592 ef0lem 11636 phi1 12186 strle1g 12530 |
Copyright terms: Public domain | W3C validator |