| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzsn | Unicode version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 10129 |
. . . 4
| |
| 2 | elfz3 10128 |
. . . . 5
| |
| 3 | eleq1 2259 |
. . . . 5
| |
| 4 | 2, 3 | syl5ibrcom 157 |
. . . 4
|
| 5 | 1, 4 | impbid2 143 |
. . 3
|
| 6 | velsn 3640 |
. . 3
| |
| 7 | 5, 6 | bitr4di 198 |
. 2
|
| 8 | 7 | eqrdv 2194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltirr 8010 ax-pre-apti 8013 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-neg 8219 df-z 9346 df-uz 9621 df-fz 10103 |
| This theorem is referenced by: fzsuc 10163 fzpred 10164 fzpr 10171 fzsuc2 10173 fz0sn 10215 1fv 10233 fzosn 10300 exfzdc 10335 uzsinds 10555 seqf1og 10632 hashsng 10909 sumsnf 11593 fsum1 11596 fsumm1 11600 fsum1p 11602 prodsnf 11776 fprod1 11778 fprod1p 11783 fprodabs 11800 ef0lem 11844 phi1 12414 strle1g 12811 gsumfzsnfd 13553 gsumfzfsumlemm 14221 ply1termlem 15086 |
| Copyright terms: Public domain | W3C validator |