| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzsn | Unicode version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 10192 |
. . . 4
| |
| 2 | elfz3 10191 |
. . . . 5
| |
| 3 | eleq1 2270 |
. . . . 5
| |
| 4 | 2, 3 | syl5ibrcom 157 |
. . . 4
|
| 5 | 1, 4 | impbid2 143 |
. . 3
|
| 6 | velsn 3660 |
. . 3
| |
| 7 | 5, 6 | bitr4di 198 |
. 2
|
| 8 | 7 | eqrdv 2205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-apti 8075 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-neg 8281 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: fzsuc 10226 fzpred 10227 fzpr 10234 fzsuc2 10236 fz0sn 10278 1fv 10296 fzosn 10371 exfzdc 10406 uzsinds 10626 seqf1og 10703 hashsng 10980 sumsnf 11835 fsum1 11838 fsumm1 11842 fsum1p 11844 prodsnf 12018 fprod1 12020 fprod1p 12025 fprodabs 12042 ef0lem 12086 phi1 12656 strle1g 13053 gsumfzsnfd 13796 gsumfzfsumlemm 14464 ply1termlem 15329 |
| Copyright terms: Public domain | W3C validator |