| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzsn | Unicode version | ||
| Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| fzsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz1eq 10077 |
. . . 4
| |
| 2 | elfz3 10076 |
. . . . 5
| |
| 3 | eleq1 2252 |
. . . . 5
| |
| 4 | 2, 3 | syl5ibrcom 157 |
. . . 4
|
| 5 | 1, 4 | impbid2 143 |
. . 3
|
| 6 | velsn 3631 |
. . 3
| |
| 7 | 5, 6 | bitr4di 198 |
. 2
|
| 8 | 7 | eqrdv 2187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-cnex 7942 ax-resscn 7943 ax-pre-ltirr 7963 ax-pre-apti 7966 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2758 df-sbc 2982 df-dif 3150 df-un 3152 df-in 3154 df-ss 3161 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-br 4026 df-opab 4087 df-mpt 4088 df-id 4318 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-fv 5250 df-ov 5907 df-oprab 5908 df-mpo 5909 df-pnf 8035 df-mnf 8036 df-xr 8037 df-ltxr 8038 df-le 8039 df-neg 8172 df-z 9295 df-uz 9570 df-fz 10051 |
| This theorem is referenced by: fzsuc 10111 fzpred 10112 fzpr 10119 fzsuc2 10121 fz0sn 10163 1fv 10181 fzosn 10247 exfzdc 10282 uzsinds 10487 hashsng 10825 sumsnf 11464 fsum1 11467 fsumm1 11471 fsum1p 11473 prodsnf 11647 fprod1 11649 fprod1p 11654 fprodabs 11671 ef0lem 11715 phi1 12268 strle1g 12635 |
| Copyright terms: Public domain | W3C validator |