ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsn Unicode version

Theorem fzsn 10066
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzsn  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )

Proof of Theorem fzsn
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfz1eq 10035 . . . 4  |-  ( k  e.  ( M ... M )  ->  k  =  M )
2 elfz3 10034 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  ( M ... M
) )
3 eleq1 2240 . . . . 5  |-  ( k  =  M  ->  (
k  e.  ( M ... M )  <->  M  e.  ( M ... M ) ) )
42, 3syl5ibrcom 157 . . . 4  |-  ( M  e.  ZZ  ->  (
k  =  M  -> 
k  e.  ( M ... M ) ) )
51, 4impbid2 143 . . 3  |-  ( M  e.  ZZ  ->  (
k  e.  ( M ... M )  <->  k  =  M ) )
6 velsn 3610 . . 3  |-  ( k  e.  { M }  <->  k  =  M )
75, 6bitr4di 198 . 2  |-  ( M  e.  ZZ  ->  (
k  e.  ( M ... M )  <->  k  e.  { M } ) )
87eqrdv 2175 1  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   {csn 3593  (class class class)co 5875   ZZcz 9253   ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-pre-ltirr 7923  ax-pre-apti 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-neg 8131  df-z 9254  df-uz 9529  df-fz 10009
This theorem is referenced by:  fzsuc  10069  fzpred  10070  fzpr  10077  fzsuc2  10079  fz0sn  10121  1fv  10139  fzosn  10205  exfzdc  10240  uzsinds  10442  hashsng  10778  sumsnf  11417  fsum1  11420  fsumm1  11424  fsum1p  11426  prodsnf  11600  fprod1  11602  fprod1p  11607  fprodabs  11624  ef0lem  11668  phi1  12219  strle1g  12565
  Copyright terms: Public domain W3C validator