Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzsn | Unicode version |
Description: A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fzsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1eq 9970 | . . . 4 | |
2 | elfz3 9969 | . . . . 5 | |
3 | eleq1 2229 | . . . . 5 | |
4 | 2, 3 | syl5ibrcom 156 | . . . 4 |
5 | 1, 4 | impbid2 142 | . . 3 |
6 | velsn 3593 | . . 3 | |
7 | 5, 6 | bitr4di 197 | . 2 |
8 | 7 | eqrdv 2163 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 csn 3576 (class class class)co 5842 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-neg 8072 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: fzsuc 10004 fzpred 10005 fzpr 10012 fzsuc2 10014 fz0sn 10056 1fv 10074 fzosn 10140 exfzdc 10175 uzsinds 10377 hashsng 10711 sumsnf 11350 fsum1 11353 fsumm1 11357 fsum1p 11359 prodsnf 11533 fprod1 11535 fprod1p 11540 fprodabs 11557 ef0lem 11601 phi1 12151 strle1g 12485 |
Copyright terms: Public domain | W3C validator |