![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzssuz | GIF version |
Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
Ref | Expression |
---|---|
fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 10051 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
2 | 1 | ssriv 3174 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3144 ‘cfv 5235 (class class class)co 5896 ℤ≥cuz 9558 ...cfz 10038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-neg 8161 df-z 9284 df-uz 9559 df-fz 10039 |
This theorem is referenced by: fzssnn 10098 fzossnn0 10205 seq3split 10510 seq3caopr2 10513 summodclem2a 11421 fisumss 11432 fsumsersdc 11435 isumclim3 11463 binomlem 11523 prodmodclem2a 11616 fprodssdc 11630 isprm3 12150 2prm 12159 4sqlem11 12433 |
Copyright terms: Public domain | W3C validator |