| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzssuz | GIF version | ||
| Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| Ref | Expression |
|---|---|
| fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10225 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | ssriv 3228 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 ℤ≥cuz 9730 ...cfz 10212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-neg 8328 df-z 9455 df-uz 9731 df-fz 10213 |
| This theorem is referenced by: fzssnn 10272 fzossnn0 10381 seq3split 10718 seq3caopr2 10723 summodclem2a 11900 fisumss 11911 fsumsersdc 11914 isumclim3 11942 binomlem 12002 prodmodclem2a 12095 fprodssdc 12109 isprm3 12648 2prm 12657 4sqlem11 12932 |
| Copyright terms: Public domain | W3C validator |