| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzssuz | GIF version | ||
| Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| Ref | Expression |
|---|---|
| fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10156 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | ssriv 3199 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3168 ‘cfv 5277 (class class class)co 5954 ℤ≥cuz 9661 ...cfz 10143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-neg 8259 df-z 9386 df-uz 9662 df-fz 10144 |
| This theorem is referenced by: fzssnn 10203 fzossnn0 10312 seq3split 10646 seq3caopr2 10651 summodclem2a 11742 fisumss 11753 fsumsersdc 11756 isumclim3 11784 binomlem 11844 prodmodclem2a 11937 fprodssdc 11951 isprm3 12490 2prm 12499 4sqlem11 12774 |
| Copyright terms: Public domain | W3C validator |