Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzss2 | Unicode version |
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
fzss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9906 | . . . . 5 | |
2 | 1 | adantl 275 | . . . 4 |
3 | elfzuz3 9907 | . . . . 5 | |
4 | uztrn 9438 | . . . . 5 | |
5 | 3, 4 | sylan2 284 | . . . 4 |
6 | elfzuzb 9904 | . . . 4 | |
7 | 2, 5, 6 | sylanbrc 414 | . . 3 |
8 | 7 | ex 114 | . 2 |
9 | 8 | ssrdv 3134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2128 wss 3102 cfv 5167 (class class class)co 5818 cuz 9422 cfz 9894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-pre-ltwlin 7828 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-neg 8032 df-z 9151 df-uz 9423 df-fz 9895 |
This theorem is referenced by: fzssp1 9951 elfz0add 10004 fzoss2 10053 iseqf1olemnab 10369 bcm1k 10616 seq3coll 10695 fsum0diaglem 11319 fisum0diag2 11326 mertenslemi1 11414 prodfrecap 11425 strleund 12238 strleun 12239 |
Copyright terms: Public domain | W3C validator |