| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzss2 | Unicode version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10143 |
. . . . 5
| |
| 2 | 1 | adantl 277 |
. . . 4
|
| 3 | elfzuz3 10144 |
. . . . 5
| |
| 4 | uztrn 9665 |
. . . . 5
| |
| 5 | 3, 4 | sylan2 286 |
. . . 4
|
| 6 | elfzuzb 10141 |
. . . 4
| |
| 7 | 2, 5, 6 | sylanbrc 417 |
. . 3
|
| 8 | 7 | ex 115 |
. 2
|
| 9 | 8 | ssrdv 3199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltwlin 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-neg 8246 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: fzssp1 10189 elfz0add 10242 fzoss2 10296 seqsplitg 10634 seqcaopr2g 10639 iseqf1olemnab 10646 seqf1oglem2a 10663 seqf1oglem2 10665 seqhomog 10675 bcm1k 10905 seq3coll 10987 fsum0diaglem 11751 fisum0diag2 11758 mertenslemi1 11846 prodfrecap 11857 pcfac 12673 strleund 12935 strleun 12936 strext 12937 plyaddlem1 15219 plymullem1 15220 plycoeid3 15229 gausslemma2dlem2 15539 lgsquadlem3 15556 |
| Copyright terms: Public domain | W3C validator |