| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzss2 | Unicode version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10178 |
. . . . 5
| |
| 2 | 1 | adantl 277 |
. . . 4
|
| 3 | elfzuz3 10179 |
. . . . 5
| |
| 4 | uztrn 9700 |
. . . . 5
| |
| 5 | 3, 4 | sylan2 286 |
. . . 4
|
| 6 | elfzuzb 10176 |
. . . 4
| |
| 7 | 2, 5, 6 | sylanbrc 417 |
. . 3
|
| 8 | 7 | ex 115 |
. 2
|
| 9 | 8 | ssrdv 3207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltwlin 8073 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-neg 8281 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: fzssp1 10224 elfz0add 10277 fzoss2 10331 seqsplitg 10671 seqcaopr2g 10676 iseqf1olemnab 10683 seqf1oglem2a 10700 seqf1oglem2 10702 seqhomog 10712 bcm1k 10942 seq3coll 11024 fsum0diaglem 11866 fisum0diag2 11873 mertenslemi1 11961 prodfrecap 11972 pcfac 12788 strleund 13050 strleun 13051 strext 13052 plyaddlem1 15334 plymullem1 15335 plycoeid3 15344 gausslemma2dlem2 15654 lgsquadlem3 15671 |
| Copyright terms: Public domain | W3C validator |