ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzss2 Unicode version

Theorem fzss2 9999
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
fzss2  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( M ... K )  C_  ( M ... N ) )

Proof of Theorem fzss2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzuz 9956 . . . . 5  |-  ( k  e.  ( M ... K )  ->  k  e.  ( ZZ>= `  M )
)
21adantl 275 . . . 4  |-  ( ( N  e.  ( ZZ>= `  K )  /\  k  e.  ( M ... K
) )  ->  k  e.  ( ZZ>= `  M )
)
3 elfzuz3 9957 . . . . 5  |-  ( k  e.  ( M ... K )  ->  K  e.  ( ZZ>= `  k )
)
4 uztrn 9482 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  k )
)  ->  N  e.  ( ZZ>= `  k )
)
53, 4sylan2 284 . . . 4  |-  ( ( N  e.  ( ZZ>= `  K )  /\  k  e.  ( M ... K
) )  ->  N  e.  ( ZZ>= `  k )
)
6 elfzuzb 9954 . . . 4  |-  ( k  e.  ( M ... N )  <->  ( k  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  k ) ) )
72, 5, 6sylanbrc 414 . . 3  |-  ( ( N  e.  ( ZZ>= `  K )  /\  k  e.  ( M ... K
) )  ->  k  e.  ( M ... N
) )
87ex 114 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( k  e.  ( M ... K
)  ->  k  e.  ( M ... N ) ) )
98ssrdv 3148 1  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( M ... K )  C_  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136    C_ wss 3116   ` cfv 5188  (class class class)co 5842   ZZ>=cuz 9466   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltwlin 7866
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-neg 8072  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  fzssp1  10002  elfz0add  10055  fzoss2  10107  iseqf1olemnab  10423  bcm1k  10673  seq3coll  10755  fsum0diaglem  11381  fisum0diag2  11388  mertenslemi1  11476  prodfrecap  11487  pcfac  12280  strleund  12483  strleun  12484
  Copyright terms: Public domain W3C validator