ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactfval Unicode version

Theorem grplactfval 13620
Description: The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
grplactfval  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Distinct variable groups:    g, a, A    G, a, g    .+ , a,
g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactfval
StepHypRef Expression
1 grplact.1 . 2  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
2 oveq1 6001 . . 3  |-  ( g  =  A  ->  (
g  .+  a )  =  ( A  .+  a ) )
32mpteq2dv 4174 . 2  |-  ( g  =  A  ->  (
a  e.  X  |->  ( g  .+  a ) )  =  ( a  e.  X  |->  ( A 
.+  a ) ) )
4 id 19 . 2  |-  ( A  e.  X  ->  A  e.  X )
5 grplact.2 . . . 4  |-  X  =  ( Base `  G
)
6 basfn 13077 . . . . 5  |-  Base  Fn  _V
75basmex 13078 . . . . 5  |-  ( A  e.  X  ->  G  e.  _V )
8 funfvex 5640 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5419 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . 4  |-  ( A  e.  X  ->  ( Base `  G )  e. 
_V )
115, 10eqeltrid 2316 . . 3  |-  ( A  e.  X  ->  X  e.  _V )
1211mptexd 5859 . 2  |-  ( A  e.  X  ->  (
a  e.  X  |->  ( A  .+  a ) )  e.  _V )
131, 3, 4, 12fvmptd3 5721 1  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    |-> cmpt 4144    Fn wfn 5309   ` cfv 5314  (class class class)co 5994   Basecbs 13018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024
This theorem is referenced by:  grplactcnv  13621  eqglact  13748  eqgen  13750
  Copyright terms: Public domain W3C validator