ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactfval Unicode version

Theorem grplactfval 13233
Description: The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
grplactfval  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Distinct variable groups:    g, a, A    G, a, g    .+ , a,
g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactfval
StepHypRef Expression
1 grplact.1 . 2  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
2 oveq1 5929 . . 3  |-  ( g  =  A  ->  (
g  .+  a )  =  ( A  .+  a ) )
32mpteq2dv 4124 . 2  |-  ( g  =  A  ->  (
a  e.  X  |->  ( g  .+  a ) )  =  ( a  e.  X  |->  ( A 
.+  a ) ) )
4 id 19 . 2  |-  ( A  e.  X  ->  A  e.  X )
5 grplact.2 . . . 4  |-  X  =  ( Base `  G
)
6 basfn 12736 . . . . 5  |-  Base  Fn  _V
75basmex 12737 . . . . 5  |-  ( A  e.  X  ->  G  e.  _V )
8 funfvex 5575 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5358 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . 4  |-  ( A  e.  X  ->  ( Base `  G )  e. 
_V )
115, 10eqeltrid 2283 . . 3  |-  ( A  e.  X  ->  X  e.  _V )
1211mptexd 5789 . 2  |-  ( A  e.  X  ->  (
a  e.  X  |->  ( A  .+  a ) )  e.  _V )
131, 3, 4, 12fvmptd3 5655 1  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4094    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684
This theorem is referenced by:  grplactcnv  13234  eqglact  13355  eqgen  13357
  Copyright terms: Public domain W3C validator