ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactfval Unicode version

Theorem grplactfval 13176
Description: The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
grplactfval  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Distinct variable groups:    g, a, A    G, a, g    .+ , a,
g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactfval
StepHypRef Expression
1 grplact.1 . 2  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
2 oveq1 5926 . . 3  |-  ( g  =  A  ->  (
g  .+  a )  =  ( A  .+  a ) )
32mpteq2dv 4121 . 2  |-  ( g  =  A  ->  (
a  e.  X  |->  ( g  .+  a ) )  =  ( a  e.  X  |->  ( A 
.+  a ) ) )
4 id 19 . 2  |-  ( A  e.  X  ->  A  e.  X )
5 grplact.2 . . . 4  |-  X  =  ( Base `  G
)
6 basfn 12679 . . . . 5  |-  Base  Fn  _V
75basmex 12680 . . . . 5  |-  ( A  e.  X  ->  G  e.  _V )
8 funfvex 5572 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5355 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . 4  |-  ( A  e.  X  ->  ( Base `  G )  e. 
_V )
115, 10eqeltrid 2280 . . 3  |-  ( A  e.  X  ->  X  e.  _V )
1211mptexd 5786 . 2  |-  ( A  e.  X  ->  (
a  e.  X  |->  ( A  .+  a ) )  e.  _V )
131, 3, 4, 12fvmptd3 5652 1  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   Basecbs 12621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627
This theorem is referenced by:  grplactcnv  13177  eqglact  13298  eqgen  13300
  Copyright terms: Public domain W3C validator