ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactfval Unicode version

Theorem grplactfval 12997
Description: The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
grplactfval  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Distinct variable groups:    g, a, A    G, a, g    .+ , a,
g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactfval
StepHypRef Expression
1 grplact.1 . 2  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
2 oveq1 5895 . . 3  |-  ( g  =  A  ->  (
g  .+  a )  =  ( A  .+  a ) )
32mpteq2dv 4106 . 2  |-  ( g  =  A  ->  (
a  e.  X  |->  ( g  .+  a ) )  =  ( a  e.  X  |->  ( A 
.+  a ) ) )
4 id 19 . 2  |-  ( A  e.  X  ->  A  e.  X )
5 grplact.2 . . . 4  |-  X  =  ( Base `  G
)
6 basfn 12533 . . . . 5  |-  Base  Fn  _V
75basmex 12534 . . . . 5  |-  ( A  e.  X  ->  G  e.  _V )
8 funfvex 5544 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5328 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . 4  |-  ( A  e.  X  ->  ( Base `  G )  e. 
_V )
115, 10eqeltrid 2274 . . 3  |-  ( A  e.  X  ->  X  e.  _V )
1211mptexd 5756 . 2  |-  ( A  e.  X  ->  (
a  e.  X  |->  ( A  .+  a ) )  e.  _V )
131, 3, 4, 12fvmptd3 5622 1  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   _Vcvv 2749    |-> cmpt 4076    Fn wfn 5223   ` cfv 5228  (class class class)co 5888   Basecbs 12475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-inn 8933  df-ndx 12478  df-slot 12479  df-base 12481
This theorem is referenced by:  grplactcnv  12998  eqglact  13116  eqgen  13118
  Copyright terms: Public domain W3C validator