ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactfval Unicode version

Theorem grplactfval 12827
Description: The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
grplactfval  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Distinct variable groups:    g, a, A    G, a, g    .+ , a,
g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactfval
StepHypRef Expression
1 grplact.1 . 2  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
2 oveq1 5869 . . 3  |-  ( g  =  A  ->  (
g  .+  a )  =  ( A  .+  a ) )
32mpteq2dv 4086 . 2  |-  ( g  =  A  ->  (
a  e.  X  |->  ( g  .+  a ) )  =  ( a  e.  X  |->  ( A 
.+  a ) ) )
4 id 19 . 2  |-  ( A  e.  X  ->  A  e.  X )
5 grplact.2 . . . 4  |-  X  =  ( Base `  G
)
6 basfn 12482 . . . . 5  |-  Base  Fn  _V
75basmex 12483 . . . . 5  |-  ( A  e.  X  ->  G  e.  _V )
8 funfvex 5521 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
98funfni 5305 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
106, 7, 9sylancr 414 . . . 4  |-  ( A  e.  X  ->  ( Base `  G )  e. 
_V )
115, 10eqeltrid 2260 . . 3  |-  ( A  e.  X  ->  X  e.  _V )
1211mptexd 5732 . 2  |-  ( A  e.  X  ->  (
a  e.  X  |->  ( A  .+  a ) )  e.  _V )
131, 3, 4, 12fvmptd3 5598 1  |-  ( A  e.  X  ->  ( F `  A )  =  ( a  e.  X  |->  ( A  .+  a ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1351    e. wcel 2144   _Vcvv 2733    |-> cmpt 4056    Fn wfn 5200   ` cfv 5205  (class class class)co 5862   Basecbs 12425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ral 2456  df-rex 2457  df-reu 2458  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-un 3128  df-in 3130  df-ss 3137  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-id 4284  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-ov 5865  df-inn 8888  df-ndx 12428  df-slot 12429  df-base 12431
This theorem is referenced by:  grplactcnv  12828
  Copyright terms: Public domain W3C validator