| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplactfval | GIF version | ||
| Description: The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.) |
| Ref | Expression |
|---|---|
| grplact.1 | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| grplact.2 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| grplactfval | ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | . 2 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 2 | oveq1 5981 | . . 3 ⊢ (𝑔 = 𝐴 → (𝑔 + 𝑎) = (𝐴 + 𝑎)) | |
| 3 | 2 | mpteq2dv 4154 | . 2 ⊢ (𝑔 = 𝐴 → (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
| 4 | id 19 | . 2 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
| 5 | grplact.2 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 6 | basfn 13057 | . . . . 5 ⊢ Base Fn V | |
| 7 | 5 | basmex 13058 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐺 ∈ V) |
| 8 | funfvex 5620 | . . . . . 6 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 9 | 8 | funfni 5399 | . . . . 5 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 10 | 6, 7, 9 | sylancr 414 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (Base‘𝐺) ∈ V) |
| 11 | 5, 10 | eqeltrid 2296 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝑋 ∈ V) |
| 12 | 11 | mptexd 5839 | . 2 ⊢ (𝐴 ∈ 𝑋 → (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) ∈ V) |
| 13 | 1, 3, 4, 12 | fvmptd3 5701 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ↦ cmpt 4124 Fn wfn 5289 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 |
| This theorem is referenced by: grplactcnv 13601 eqglact 13728 eqgen 13730 |
| Copyright terms: Public domain | W3C validator |