ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactfval GIF version

Theorem grplactfval 12822
Description: The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
grplactfval (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎)

Proof of Theorem grplactfval
StepHypRef Expression
1 grplact.1 . 2 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
2 oveq1 5864 . . 3 (𝑔 = 𝐴 → (𝑔 + 𝑎) = (𝐴 + 𝑎))
32mpteq2dv 4081 . 2 (𝑔 = 𝐴 → (𝑎𝑋 ↦ (𝑔 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
4 id 19 . 2 (𝐴𝑋𝐴𝑋)
5 grplact.2 . . . 4 𝑋 = (Base‘𝐺)
6 basfn 12477 . . . . 5 Base Fn V
75basmex 12478 . . . . 5 (𝐴𝑋𝐺 ∈ V)
8 funfvex 5516 . . . . . 6 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
98funfni 5300 . . . . 5 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
106, 7, 9sylancr 412 . . . 4 (𝐴𝑋 → (Base‘𝐺) ∈ V)
115, 10eqeltrid 2258 . . 3 (𝐴𝑋𝑋 ∈ V)
1211mptexd 5727 . 2 (𝐴𝑋 → (𝑎𝑋 ↦ (𝐴 + 𝑎)) ∈ V)
131, 3, 4, 12fvmptd3 5593 1 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1349  wcel 2142  Vcvv 2731  cmpt 4051   Fn wfn 5195  cfv 5200  (class class class)co 5857  Basecbs 12420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-cnex 7869  ax-resscn 7870  ax-1re 7872  ax-addrcl 7875
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ral 2454  df-rex 2455  df-reu 2456  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-ov 5860  df-inn 8883  df-ndx 12423  df-slot 12424  df-base 12426
This theorem is referenced by:  grplactcnv  12823
  Copyright terms: Public domain W3C validator