![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grplactfval | GIF version |
Description: The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.) |
Ref | Expression |
---|---|
grplact.1 | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
grplact.2 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
grplactfval | ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplact.1 | . 2 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
2 | oveq1 5899 | . . 3 ⊢ (𝑔 = 𝐴 → (𝑔 + 𝑎) = (𝐴 + 𝑎)) | |
3 | 2 | mpteq2dv 4109 | . 2 ⊢ (𝑔 = 𝐴 → (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
4 | id 19 | . 2 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
5 | grplact.2 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
6 | basfn 12545 | . . . . 5 ⊢ Base Fn V | |
7 | 5 | basmex 12546 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐺 ∈ V) |
8 | funfvex 5548 | . . . . . 6 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
9 | 8 | funfni 5332 | . . . . 5 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
10 | 6, 7, 9 | sylancr 414 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (Base‘𝐺) ∈ V) |
11 | 5, 10 | eqeltrid 2276 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝑋 ∈ V) |
12 | 11 | mptexd 5760 | . 2 ⊢ (𝐴 ∈ 𝑋 → (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) ∈ V) |
13 | 1, 3, 4, 12 | fvmptd3 5626 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ↦ cmpt 4079 Fn wfn 5227 ‘cfv 5232 (class class class)co 5892 Basecbs 12487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-cnex 7922 ax-resscn 7923 ax-1re 7925 ax-addrcl 7928 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-ov 5895 df-inn 8940 df-ndx 12490 df-slot 12491 df-base 12493 |
This theorem is referenced by: grplactcnv 13019 eqglact 13137 eqgen 13139 |
Copyright terms: Public domain | W3C validator |