ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactfval GIF version

Theorem grplactfval 12971
Description: The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
grplactfval (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎)

Proof of Theorem grplactfval
StepHypRef Expression
1 grplact.1 . 2 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
2 oveq1 5882 . . 3 (𝑔 = 𝐴 → (𝑔 + 𝑎) = (𝐴 + 𝑎))
32mpteq2dv 4095 . 2 (𝑔 = 𝐴 → (𝑎𝑋 ↦ (𝑔 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
4 id 19 . 2 (𝐴𝑋𝐴𝑋)
5 grplact.2 . . . 4 𝑋 = (Base‘𝐺)
6 basfn 12520 . . . . 5 Base Fn V
75basmex 12521 . . . . 5 (𝐴𝑋𝐺 ∈ V)
8 funfvex 5533 . . . . . 6 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
98funfni 5317 . . . . 5 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
106, 7, 9sylancr 414 . . . 4 (𝐴𝑋 → (Base‘𝐺) ∈ V)
115, 10eqeltrid 2264 . . 3 (𝐴𝑋𝑋 ∈ V)
1211mptexd 5744 . 2 (𝐴𝑋 → (𝑎𝑋 ↦ (𝐴 + 𝑎)) ∈ V)
131, 3, 4, 12fvmptd3 5610 1 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2738  cmpt 4065   Fn wfn 5212  cfv 5217  (class class class)co 5875  Basecbs 12462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-inn 8920  df-ndx 12465  df-slot 12466  df-base 12468
This theorem is referenced by:  grplactcnv  12972  eqglact  13084  eqgen  13086
  Copyright terms: Public domain W3C validator