ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemres Unicode version

Theorem fodjuomnilemres 7250
Description: Lemma for fodjuomni 7251. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
Hypotheses
Ref Expression
fodjuomni.o  |-  ( ph  ->  O  e. Omni )
fodjuomni.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuomni.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
Assertion
Ref Expression
fodjuomnilemres  |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F    x, A, z    y, A   
y, F    y, P, z
Allowed substitution hints:    ph( x)    B( x, y)    P( x)    F( x)    O( x)

Proof of Theorem fodjuomnilemres
Dummy variables  v  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5575 . . . . . 6  |-  ( f  =  P  ->  (
f `  w )  =  ( P `  w ) )
21eqeq1d 2214 . . . . 5  |-  ( f  =  P  ->  (
( f `  w
)  =  (/)  <->  ( P `  w )  =  (/) ) )
32rexbidv 2507 . . . 4  |-  ( f  =  P  ->  ( E. w  e.  O  ( f `  w
)  =  (/)  <->  E. w  e.  O  ( P `  w )  =  (/) ) )
41eqeq1d 2214 . . . . 5  |-  ( f  =  P  ->  (
( f `  w
)  =  1o  <->  ( P `  w )  =  1o ) )
54ralbidv 2506 . . . 4  |-  ( f  =  P  ->  ( A. w  e.  O  ( f `  w
)  =  1o  <->  A. w  e.  O  ( P `  w )  =  1o ) )
63, 5orbi12d 795 . . 3  |-  ( f  =  P  ->  (
( E. w  e.  O  ( f `  w )  =  (/)  \/ 
A. w  e.  O  ( f `  w
)  =  1o )  <-> 
( E. w  e.  O  ( P `  w )  =  (/)  \/ 
A. w  e.  O  ( P `  w )  =  1o ) ) )
7 fodjuomni.o . . . 4  |-  ( ph  ->  O  e. Omni )
8 isomnimap 7239 . . . . 5  |-  ( O  e. Omni  ->  ( O  e. Omni  <->  A. f  e.  ( 2o 
^m  O ) ( E. w  e.  O  ( f `  w
)  =  (/)  \/  A. w  e.  O  (
f `  w )  =  1o ) ) )
97, 8syl 14 . . . 4  |-  ( ph  ->  ( O  e. Omni  <->  A. f  e.  ( 2o  ^m  O
) ( E. w  e.  O  ( f `  w )  =  (/)  \/ 
A. w  e.  O  ( f `  w
)  =  1o ) ) )
107, 9mpbid 147 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  O ) ( E. w  e.  O  ( f `  w )  =  (/)  \/ 
A. w  e.  O  ( f `  w
)  =  1o ) )
11 fodjuomni.fo . . . 4  |-  ( ph  ->  F : O -onto-> ( A B ) )
12 fodjuomni.p . . . 4  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
1311, 12, 7fodjuf 7247 . . 3  |-  ( ph  ->  P  e.  ( 2o 
^m  O ) )
146, 10, 13rspcdva 2882 . 2  |-  ( ph  ->  ( E. w  e.  O  ( P `  w )  =  (/)  \/ 
A. w  e.  O  ( P `  w )  =  1o ) )
1511adantr 276 . . . . 5  |-  ( (
ph  /\  E. w  e.  O  ( P `  w )  =  (/) )  ->  F : O -onto->
( A B )
)
16 simpr 110 . . . . . 6  |-  ( (
ph  /\  E. w  e.  O  ( P `  w )  =  (/) )  ->  E. w  e.  O  ( P `  w )  =  (/) )
17 fveqeq2 5585 . . . . . . 7  |-  ( w  =  v  ->  (
( P `  w
)  =  (/)  <->  ( P `  v )  =  (/) ) )
1817cbvrexv 2739 . . . . . 6  |-  ( E. w  e.  O  ( P `  w )  =  (/)  <->  E. v  e.  O  ( P `  v )  =  (/) )
1916, 18sylib 122 . . . . 5  |-  ( (
ph  /\  E. w  e.  O  ( P `  w )  =  (/) )  ->  E. v  e.  O  ( P `  v )  =  (/) )
2015, 12, 19fodjum 7248 . . . 4  |-  ( (
ph  /\  E. w  e.  O  ( P `  w )  =  (/) )  ->  E. x  x  e.  A )
2120ex 115 . . 3  |-  ( ph  ->  ( E. w  e.  O  ( P `  w )  =  (/)  ->  E. x  x  e.  A ) )
2211adantr 276 . . . . 5  |-  ( (
ph  /\  A. w  e.  O  ( P `  w )  =  1o )  ->  F : O -onto-> ( A B ) )
23 simpr 110 . . . . 5  |-  ( (
ph  /\  A. w  e.  O  ( P `  w )  =  1o )  ->  A. w  e.  O  ( P `  w )  =  1o )
2422, 12, 23fodju0 7249 . . . 4  |-  ( (
ph  /\  A. w  e.  O  ( P `  w )  =  1o )  ->  A  =  (/) )
2524ex 115 . . 3  |-  ( ph  ->  ( A. w  e.  O  ( P `  w )  =  1o 
->  A  =  (/) ) )
2621, 25orim12d 788 . 2  |-  ( ph  ->  ( ( E. w  e.  O  ( P `  w )  =  (/)  \/ 
A. w  e.  O  ( P `  w )  =  1o )  -> 
( E. x  x  e.  A  \/  A  =  (/) ) ) )
2714, 26mpd 13 1  |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   (/)c0 3460   ifcif 3571    |-> cmpt 4105   -onto->wfo 5269   ` cfv 5271  (class class class)co 5944   1oc1o 6495   2oc2o 6496    ^m cmap 6735   ⊔ cdju 7139  inlcinl 7147  Omnicomni 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-1o 6502  df-2o 6503  df-map 6737  df-dju 7140  df-inl 7149  df-inr 7150  df-omni 7237
This theorem is referenced by:  fodjuomni  7251
  Copyright terms: Public domain W3C validator