ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemres Unicode version

Theorem fodjuomnilemres 7276
Description: Lemma for fodjuomni 7277. The final result with  P expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
Hypotheses
Ref Expression
fodjuomni.o  |-  ( ph  ->  O  e. Omni )
fodjuomni.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuomni.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
Assertion
Ref Expression
fodjuomnilemres  |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F    x, A, z    y, A   
y, F    y, P, z
Allowed substitution hints:    ph( x)    B( x, y)    P( x)    F( x)    O( x)

Proof of Theorem fodjuomnilemres
Dummy variables  v  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5598 . . . . . 6  |-  ( f  =  P  ->  (
f `  w )  =  ( P `  w ) )
21eqeq1d 2216 . . . . 5  |-  ( f  =  P  ->  (
( f `  w
)  =  (/)  <->  ( P `  w )  =  (/) ) )
32rexbidv 2509 . . . 4  |-  ( f  =  P  ->  ( E. w  e.  O  ( f `  w
)  =  (/)  <->  E. w  e.  O  ( P `  w )  =  (/) ) )
41eqeq1d 2216 . . . . 5  |-  ( f  =  P  ->  (
( f `  w
)  =  1o  <->  ( P `  w )  =  1o ) )
54ralbidv 2508 . . . 4  |-  ( f  =  P  ->  ( A. w  e.  O  ( f `  w
)  =  1o  <->  A. w  e.  O  ( P `  w )  =  1o ) )
63, 5orbi12d 795 . . 3  |-  ( f  =  P  ->  (
( E. w  e.  O  ( f `  w )  =  (/)  \/ 
A. w  e.  O  ( f `  w
)  =  1o )  <-> 
( E. w  e.  O  ( P `  w )  =  (/)  \/ 
A. w  e.  O  ( P `  w )  =  1o ) ) )
7 fodjuomni.o . . . 4  |-  ( ph  ->  O  e. Omni )
8 isomnimap 7265 . . . . 5  |-  ( O  e. Omni  ->  ( O  e. Omni  <->  A. f  e.  ( 2o 
^m  O ) ( E. w  e.  O  ( f `  w
)  =  (/)  \/  A. w  e.  O  (
f `  w )  =  1o ) ) )
97, 8syl 14 . . . 4  |-  ( ph  ->  ( O  e. Omni  <->  A. f  e.  ( 2o  ^m  O
) ( E. w  e.  O  ( f `  w )  =  (/)  \/ 
A. w  e.  O  ( f `  w
)  =  1o ) ) )
107, 9mpbid 147 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  O ) ( E. w  e.  O  ( f `  w )  =  (/)  \/ 
A. w  e.  O  ( f `  w
)  =  1o ) )
11 fodjuomni.fo . . . 4  |-  ( ph  ->  F : O -onto-> ( A B ) )
12 fodjuomni.p . . . 4  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
1311, 12, 7fodjuf 7273 . . 3  |-  ( ph  ->  P  e.  ( 2o 
^m  O ) )
146, 10, 13rspcdva 2889 . 2  |-  ( ph  ->  ( E. w  e.  O  ( P `  w )  =  (/)  \/ 
A. w  e.  O  ( P `  w )  =  1o ) )
1511adantr 276 . . . . 5  |-  ( (
ph  /\  E. w  e.  O  ( P `  w )  =  (/) )  ->  F : O -onto->
( A B )
)
16 simpr 110 . . . . . 6  |-  ( (
ph  /\  E. w  e.  O  ( P `  w )  =  (/) )  ->  E. w  e.  O  ( P `  w )  =  (/) )
17 fveqeq2 5608 . . . . . . 7  |-  ( w  =  v  ->  (
( P `  w
)  =  (/)  <->  ( P `  v )  =  (/) ) )
1817cbvrexv 2743 . . . . . 6  |-  ( E. w  e.  O  ( P `  w )  =  (/)  <->  E. v  e.  O  ( P `  v )  =  (/) )
1916, 18sylib 122 . . . . 5  |-  ( (
ph  /\  E. w  e.  O  ( P `  w )  =  (/) )  ->  E. v  e.  O  ( P `  v )  =  (/) )
2015, 12, 19fodjum 7274 . . . 4  |-  ( (
ph  /\  E. w  e.  O  ( P `  w )  =  (/) )  ->  E. x  x  e.  A )
2120ex 115 . . 3  |-  ( ph  ->  ( E. w  e.  O  ( P `  w )  =  (/)  ->  E. x  x  e.  A ) )
2211adantr 276 . . . . 5  |-  ( (
ph  /\  A. w  e.  O  ( P `  w )  =  1o )  ->  F : O -onto-> ( A B ) )
23 simpr 110 . . . . 5  |-  ( (
ph  /\  A. w  e.  O  ( P `  w )  =  1o )  ->  A. w  e.  O  ( P `  w )  =  1o )
2422, 12, 23fodju0 7275 . . . 4  |-  ( (
ph  /\  A. w  e.  O  ( P `  w )  =  1o )  ->  A  =  (/) )
2524ex 115 . . 3  |-  ( ph  ->  ( A. w  e.  O  ( P `  w )  =  1o 
->  A  =  (/) ) )
2621, 25orim12d 788 . 2  |-  ( ph  ->  ( ( E. w  e.  O  ( P `  w )  =  (/)  \/ 
A. w  e.  O  ( P `  w )  =  1o )  -> 
( E. x  x  e.  A  \/  A  =  (/) ) ) )
2714, 26mpd 13 1  |-  ( ph  ->  ( E. x  x  e.  A  \/  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   (/)c0 3468   ifcif 3579    |-> cmpt 4121   -onto->wfo 5288   ` cfv 5290  (class class class)co 5967   1oc1o 6518   2oc2o 6519    ^m cmap 6758   ⊔ cdju 7165  inlcinl 7173  Omnicomni 7262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-1o 6525  df-2o 6526  df-map 6760  df-dju 7166  df-inl 7175  df-inr 7176  df-omni 7263
This theorem is referenced by:  fodjuomni  7277
  Copyright terms: Public domain W3C validator