Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjuomnilemres | Unicode version |
Description: Lemma for fodjuomni 7086. The final result with expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomni.o | Omni |
fodjuomni.fo | ⊔ |
fodjuomni.p | inl |
Ref | Expression |
---|---|
fodjuomnilemres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5466 | . . . . . 6 | |
2 | 1 | eqeq1d 2166 | . . . . 5 |
3 | 2 | rexbidv 2458 | . . . 4 |
4 | 1 | eqeq1d 2166 | . . . . 5 |
5 | 4 | ralbidv 2457 | . . . 4 |
6 | 3, 5 | orbi12d 783 | . . 3 |
7 | fodjuomni.o | . . . 4 Omni | |
8 | isomnimap 7074 | . . . . 5 Omni Omni | |
9 | 7, 8 | syl 14 | . . . 4 Omni |
10 | 7, 9 | mpbid 146 | . . 3 |
11 | fodjuomni.fo | . . . 4 ⊔ | |
12 | fodjuomni.p | . . . 4 inl | |
13 | 11, 12, 7 | fodjuf 7082 | . . 3 |
14 | 6, 10, 13 | rspcdva 2821 | . 2 |
15 | 11 | adantr 274 | . . . . 5 ⊔ |
16 | simpr 109 | . . . . . 6 | |
17 | fveqeq2 5476 | . . . . . . 7 | |
18 | 17 | cbvrexv 2681 | . . . . . 6 |
19 | 16, 18 | sylib 121 | . . . . 5 |
20 | 15, 12, 19 | fodjum 7083 | . . . 4 |
21 | 20 | ex 114 | . . 3 |
22 | 11 | adantr 274 | . . . . 5 ⊔ |
23 | simpr 109 | . . . . 5 | |
24 | 22, 12, 23 | fodju0 7084 | . . . 4 |
25 | 24 | ex 114 | . . 3 |
26 | 21, 25 | orim12d 776 | . 2 |
27 | 14, 26 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1335 wex 1472 wcel 2128 wral 2435 wrex 2436 c0 3394 cif 3505 cmpt 4025 wfo 5167 cfv 5169 (class class class)co 5821 c1o 6353 c2o 6354 cmap 6590 ⊔ cdju 6975 inlcinl 6983 Omnicomni 7071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-1o 6360 df-2o 6361 df-map 6592 df-dju 6976 df-inl 6985 df-inr 6986 df-omni 7072 |
This theorem is referenced by: fodjuomni 7086 |
Copyright terms: Public domain | W3C validator |