| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemlm | Unicode version | ||
| Description: Lemma for ivthinc 14963. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivth.9 |
|
| ivthinc.i |
|
| ivthinclem.l |
|
| ivthinclem.r |
|
| Ref | Expression |
|---|---|
| ivthinclemlm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 |
. . . 4
| |
| 2 | 1 | rexrd 8093 |
. . 3
|
| 3 | ivth.2 |
. . . 4
| |
| 4 | 3 | rexrd 8093 |
. . 3
|
| 5 | ivth.4 |
. . . 4
| |
| 6 | 1, 3, 5 | ltled 8162 |
. . 3
|
| 7 | lbicc2 10076 |
. . 3
| |
| 8 | 2, 4, 6, 7 | syl3anc 1249 |
. 2
|
| 9 | ivth.9 |
. . . 4
| |
| 10 | 9 | simpld 112 |
. . 3
|
| 11 | fveq2 5561 |
. . . . 5
| |
| 12 | 11 | breq1d 4044 |
. . . 4
|
| 13 | ivthinclem.l |
. . . 4
| |
| 14 | 12, 13 | elrab2 2923 |
. . 3
|
| 15 | 8, 10, 14 | sylanbrc 417 |
. 2
|
| 16 | eleq1 2259 |
. . 3
| |
| 17 | 16 | rspcev 2868 |
. 2
|
| 18 | 8, 15, 17 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-icc 9987 |
| This theorem is referenced by: ivthinclemex 14962 |
| Copyright terms: Public domain | W3C validator |