ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlm Unicode version

Theorem ivthinclemlm 13406
Description: Lemma for ivthinc 13415. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemlm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
Distinct variable groups:    A, q    w, A    B, q    w, B   
w, F    L, q    w, U
Allowed substitution hints:    ph( x, y, w, q)    A( x, y)    B( x, y)    D( x, y, w, q)    R( x, y, w, q)    U( x, y, q)    F( x, y, q)    L( x, y, w)

Proof of Theorem ivthinclemlm
StepHypRef Expression
1 ivth.1 . . . 4  |-  ( ph  ->  A  e.  RR )
21rexrd 7969 . . 3  |-  ( ph  ->  A  e.  RR* )
3 ivth.2 . . . 4  |-  ( ph  ->  B  e.  RR )
43rexrd 7969 . . 3  |-  ( ph  ->  B  e.  RR* )
5 ivth.4 . . . 4  |-  ( ph  ->  A  <  B )
61, 3, 5ltled 8038 . . 3  |-  ( ph  ->  A  <_  B )
7 lbicc2 9941 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
82, 4, 6, 7syl3anc 1233 . 2  |-  ( ph  ->  A  e.  ( A [,] B ) )
9 ivth.9 . . . 4  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
109simpld 111 . . 3  |-  ( ph  ->  ( F `  A
)  <  U )
11 fveq2 5496 . . . . 5  |-  ( w  =  A  ->  ( F `  w )  =  ( F `  A ) )
1211breq1d 3999 . . . 4  |-  ( w  =  A  ->  (
( F `  w
)  <  U  <->  ( F `  A )  <  U
) )
13 ivthinclem.l . . . 4  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
1412, 13elrab2 2889 . . 3  |-  ( A  e.  L  <->  ( A  e.  ( A [,] B
)  /\  ( F `  A )  <  U
) )
158, 10, 14sylanbrc 415 . 2  |-  ( ph  ->  A  e.  L )
16 eleq1 2233 . . 3  |-  ( q  =  A  ->  (
q  e.  L  <->  A  e.  L ) )
1716rspcev 2834 . 2  |-  ( ( A  e.  ( A [,] B )  /\  A  e.  L )  ->  E. q  e.  ( A [,] B ) q  e.  L )
188, 15, 17syl2anc 409 1  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   E.wrex 2449   {crab 2452    C_ wss 3121   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   RR*cxr 7953    < clt 7954    <_ cle 7955   [,]cicc 9848   -cn->ccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-icc 9852
This theorem is referenced by:  ivthinclemex  13414
  Copyright terms: Public domain W3C validator