| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ivthinclemlm | Unicode version | ||
| Description: Lemma for ivthinc 14879. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) | 
| Ref | Expression | 
|---|---|
| ivth.1 | 
 | 
| ivth.2 | 
 | 
| ivth.3 | 
 | 
| ivth.4 | 
 | 
| ivth.5 | 
 | 
| ivth.7 | 
 | 
| ivth.8 | 
 | 
| ivth.9 | 
 | 
| ivthinc.i | 
 | 
| ivthinclem.l | 
 | 
| ivthinclem.r | 
 | 
| Ref | Expression | 
|---|---|
| ivthinclemlm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ivth.1 | 
. . . 4
 | |
| 2 | 1 | rexrd 8076 | 
. . 3
 | 
| 3 | ivth.2 | 
. . . 4
 | |
| 4 | 3 | rexrd 8076 | 
. . 3
 | 
| 5 | ivth.4 | 
. . . 4
 | |
| 6 | 1, 3, 5 | ltled 8145 | 
. . 3
 | 
| 7 | lbicc2 10059 | 
. . 3
 | |
| 8 | 2, 4, 6, 7 | syl3anc 1249 | 
. 2
 | 
| 9 | ivth.9 | 
. . . 4
 | |
| 10 | 9 | simpld 112 | 
. . 3
 | 
| 11 | fveq2 5558 | 
. . . . 5
 | |
| 12 | 11 | breq1d 4043 | 
. . . 4
 | 
| 13 | ivthinclem.l | 
. . . 4
 | |
| 14 | 12, 13 | elrab2 2923 | 
. . 3
 | 
| 15 | 8, 10, 14 | sylanbrc 417 | 
. 2
 | 
| 16 | eleq1 2259 | 
. . 3
 | |
| 17 | 16 | rspcev 2868 | 
. 2
 | 
| 18 | 8, 15, 17 | syl2anc 411 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-icc 9970 | 
| This theorem is referenced by: ivthinclemex 14878 | 
| Copyright terms: Public domain | W3C validator |