![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ivthinclemlm | GIF version |
Description: Lemma for ivthinc 14822. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
Ref | Expression |
---|---|
ivthinclemlm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 8071 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
3 | ivth.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | rexrd 8071 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
5 | ivth.4 | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐵) | |
6 | 1, 3, 5 | ltled 8140 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
7 | lbicc2 10053 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
8 | 2, 4, 6, 7 | syl3anc 1249 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
9 | ivth.9 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
10 | 9 | simpld 112 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) < 𝑈) |
11 | fveq2 5555 | . . . . 5 ⊢ (𝑤 = 𝐴 → (𝐹‘𝑤) = (𝐹‘𝐴)) | |
12 | 11 | breq1d 4040 | . . . 4 ⊢ (𝑤 = 𝐴 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝐴) < 𝑈)) |
13 | ivthinclem.l | . . . 4 ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | |
14 | 12, 13 | elrab2 2920 | . . 3 ⊢ (𝐴 ∈ 𝐿 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐴) < 𝑈)) |
15 | 8, 10, 14 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐿) |
16 | eleq1 2256 | . . 3 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
17 | 16 | rspcev 2865 | . 2 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐴 ∈ 𝐿) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
18 | 8, 15, 17 | syl2anc 411 | 1 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 {crab 2476 ⊆ wss 3154 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 ℝ*cxr 8055 < clt 8056 ≤ cle 8057 [,]cicc 9960 –cn→ccncf 14749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-icc 9964 |
This theorem is referenced by: ivthinclemex 14821 |
Copyright terms: Public domain | W3C validator |