ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlm GIF version

Theorem ivthinclemlm 15221
Description: Lemma for ivthinc 15230. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemlm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
Distinct variable groups:   𝐴,𝑞   𝑤,𝐴   𝐵,𝑞   𝑤,𝐵   𝑤,𝐹   𝐿,𝑞   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑞)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑤,𝑞)   𝑅(𝑥,𝑦,𝑤,𝑞)   𝑈(𝑥,𝑦,𝑞)   𝐹(𝑥,𝑦,𝑞)   𝐿(𝑥,𝑦,𝑤)

Proof of Theorem ivthinclemlm
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21rexrd 8157 . . 3 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
43rexrd 8157 . . 3 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 8226 . . 3 (𝜑𝐴𝐵)
7 lbicc2 10141 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1250 . 2 (𝜑𝐴 ∈ (𝐴[,]𝐵))
9 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
109simpld 112 . . 3 (𝜑 → (𝐹𝐴) < 𝑈)
11 fveq2 5599 . . . . 5 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
1211breq1d 4069 . . . 4 (𝑤 = 𝐴 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝐴) < 𝑈))
13 ivthinclem.l . . . 4 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
1412, 13elrab2 2939 . . 3 (𝐴𝐿 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) < 𝑈))
158, 10, 14sylanbrc 417 . 2 (𝜑𝐴𝐿)
16 eleq1 2270 . . 3 (𝑞 = 𝐴 → (𝑞𝐿𝐴𝐿))
1716rspcev 2884 . 2 ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐴𝐿) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
188, 15, 17syl2anc 411 1 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wrex 2487  {crab 2490  wss 3174   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  cr 7959  *cxr 8141   < clt 8142  cle 8143  [,]cicc 10048  cnccncf 15157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-lttrn 8074
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-icc 10052
This theorem is referenced by:  ivthinclemex  15229
  Copyright terms: Public domain W3C validator