ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlm GIF version

Theorem ivthinclemlm 14788
Description: Lemma for ivthinc 14797. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemlm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
Distinct variable groups:   𝐴,𝑞   𝑤,𝐴   𝐵,𝑞   𝑤,𝐵   𝑤,𝐹   𝐿,𝑞   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑞)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑤,𝑞)   𝑅(𝑥,𝑦,𝑤,𝑞)   𝑈(𝑥,𝑦,𝑞)   𝐹(𝑥,𝑦,𝑞)   𝐿(𝑥,𝑦,𝑤)

Proof of Theorem ivthinclemlm
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21rexrd 8069 . . 3 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
43rexrd 8069 . . 3 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 8138 . . 3 (𝜑𝐴𝐵)
7 lbicc2 10050 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1249 . 2 (𝜑𝐴 ∈ (𝐴[,]𝐵))
9 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
109simpld 112 . . 3 (𝜑 → (𝐹𝐴) < 𝑈)
11 fveq2 5554 . . . . 5 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
1211breq1d 4039 . . . 4 (𝑤 = 𝐴 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝐴) < 𝑈))
13 ivthinclem.l . . . 4 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
1412, 13elrab2 2919 . . 3 (𝐴𝐿 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) < 𝑈))
158, 10, 14sylanbrc 417 . 2 (𝜑𝐴𝐿)
16 eleq1 2256 . . 3 (𝑞 = 𝐴 → (𝑞𝐿𝐴𝐿))
1716rspcev 2864 . 2 ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐴𝐿) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
188, 15, 17syl2anc 411 1 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  {crab 2476  wss 3153   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  *cxr 8053   < clt 8054  cle 8055  [,]cicc 9957  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-icc 9961
This theorem is referenced by:  ivthinclemex  14796
  Copyright terms: Public domain W3C validator