ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlm GIF version

Theorem ivthinclemlm 14197
Description: Lemma for ivthinc 14206. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemlm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
Distinct variable groups:   𝐴,𝑞   𝑤,𝐴   𝐵,𝑞   𝑤,𝐵   𝑤,𝐹   𝐿,𝑞   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑞)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑤,𝑞)   𝑅(𝑥,𝑦,𝑤,𝑞)   𝑈(𝑥,𝑦,𝑞)   𝐹(𝑥,𝑦,𝑞)   𝐿(𝑥,𝑦,𝑤)

Proof of Theorem ivthinclemlm
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21rexrd 8009 . . 3 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
43rexrd 8009 . . 3 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 8078 . . 3 (𝜑𝐴𝐵)
7 lbicc2 9986 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1238 . 2 (𝜑𝐴 ∈ (𝐴[,]𝐵))
9 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
109simpld 112 . . 3 (𝜑 → (𝐹𝐴) < 𝑈)
11 fveq2 5517 . . . . 5 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
1211breq1d 4015 . . . 4 (𝑤 = 𝐴 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝐴) < 𝑈))
13 ivthinclem.l . . . 4 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
1412, 13elrab2 2898 . . 3 (𝐴𝐿 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) < 𝑈))
158, 10, 14sylanbrc 417 . 2 (𝜑𝐴𝐿)
16 eleq1 2240 . . 3 (𝑞 = 𝐴 → (𝑞𝐿𝐴𝐿))
1716rspcev 2843 . 2 ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐴𝐿) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
188, 15, 17syl2anc 411 1 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wrex 2456  {crab 2459  wss 3131   class class class wbr 4005  cfv 5218  (class class class)co 5877  cc 7811  cr 7812  *cxr 7993   < clt 7994  cle 7995  [,]cicc 9893  cnccncf 14142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-lttrn 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-icc 9897
This theorem is referenced by:  ivthinclemex  14205
  Copyright terms: Public domain W3C validator