| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemlm | GIF version | ||
| Description: Lemma for ivthinc 15115. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
| ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
| ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
| ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
| Ref | Expression |
|---|---|
| ivthinclemlm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 8122 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | ivth.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | rexrd 8122 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 5 | ivth.4 | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 6 | 1, 3, 5 | ltled 8191 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 7 | lbicc2 10106 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 8 | 2, 4, 6, 7 | syl3anc 1250 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 9 | ivth.9 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
| 10 | 9 | simpld 112 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) < 𝑈) |
| 11 | fveq2 5576 | . . . . 5 ⊢ (𝑤 = 𝐴 → (𝐹‘𝑤) = (𝐹‘𝐴)) | |
| 12 | 11 | breq1d 4054 | . . . 4 ⊢ (𝑤 = 𝐴 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝐴) < 𝑈)) |
| 13 | ivthinclem.l | . . . 4 ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | |
| 14 | 12, 13 | elrab2 2932 | . . 3 ⊢ (𝐴 ∈ 𝐿 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐴) < 𝑈)) |
| 15 | 8, 10, 14 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐿) |
| 16 | eleq1 2268 | . . 3 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
| 17 | 16 | rspcev 2877 | . 2 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐴 ∈ 𝐿) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
| 18 | 8, 15, 17 | syl2anc 411 | 1 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 {crab 2488 ⊆ wss 3166 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 ℂcc 7923 ℝcr 7924 ℝ*cxr 8106 < clt 8107 ≤ cle 8108 [,]cicc 10013 –cn→ccncf 15042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-lttrn 8039 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-icc 10017 |
| This theorem is referenced by: ivthinclemex 15114 |
| Copyright terms: Public domain | W3C validator |