Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ivthinclemlm | GIF version |
Description: Lemma for ivthinc 13415. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
Ref | Expression |
---|---|
ivthinclemlm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 7969 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
3 | ivth.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | rexrd 7969 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
5 | ivth.4 | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐵) | |
6 | 1, 3, 5 | ltled 8038 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
7 | lbicc2 9941 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
8 | 2, 4, 6, 7 | syl3anc 1233 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
9 | ivth.9 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
10 | 9 | simpld 111 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) < 𝑈) |
11 | fveq2 5496 | . . . . 5 ⊢ (𝑤 = 𝐴 → (𝐹‘𝑤) = (𝐹‘𝐴)) | |
12 | 11 | breq1d 3999 | . . . 4 ⊢ (𝑤 = 𝐴 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝐴) < 𝑈)) |
13 | ivthinclem.l | . . . 4 ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | |
14 | 12, 13 | elrab2 2889 | . . 3 ⊢ (𝐴 ∈ 𝐿 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝐴) < 𝑈)) |
15 | 8, 10, 14 | sylanbrc 415 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐿) |
16 | eleq1 2233 | . . 3 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
17 | 16 | rspcev 2834 | . 2 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐴 ∈ 𝐿) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
18 | 8, 15, 17 | syl2anc 409 | 1 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 {crab 2452 ⊆ wss 3121 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 ℝ*cxr 7953 < clt 7954 ≤ cle 7955 [,]cicc 9848 –cn→ccncf 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-icc 9852 |
This theorem is referenced by: ivthinclemex 13414 |
Copyright terms: Public domain | W3C validator |