ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemum Unicode version

Theorem ivthinclemum 14789
Description: Lemma for ivthinc 14797. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemum  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
Distinct variable groups:    A, r    w, A    B, r    w, B   
w, F    R, r    w, U
Allowed substitution hints:    ph( x, y, w, r)    A( x, y)    B( x, y)    D( x, y, w, r)    R( x, y, w)    U( x, y, r)    F( x, y, r)    L( x, y, w, r)

Proof of Theorem ivthinclemum
StepHypRef Expression
1 ivth.1 . . . 4  |-  ( ph  ->  A  e.  RR )
21rexrd 8069 . . 3  |-  ( ph  ->  A  e.  RR* )
3 ivth.2 . . . 4  |-  ( ph  ->  B  e.  RR )
43rexrd 8069 . . 3  |-  ( ph  ->  B  e.  RR* )
5 ivth.4 . . . 4  |-  ( ph  ->  A  <  B )
61, 3, 5ltled 8138 . . 3  |-  ( ph  ->  A  <_  B )
7 ubicc2 10051 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
82, 4, 6, 7syl3anc 1249 . 2  |-  ( ph  ->  B  e.  ( A [,] B ) )
9 ivth.9 . . . 4  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
109simprd 114 . . 3  |-  ( ph  ->  U  <  ( F `
 B ) )
11 fveq2 5554 . . . . 5  |-  ( w  =  B  ->  ( F `  w )  =  ( F `  B ) )
1211breq2d 4041 . . . 4  |-  ( w  =  B  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  B ) ) )
13 ivthinclem.r . . . 4  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
1412, 13elrab2 2919 . . 3  |-  ( B  e.  R  <->  ( B  e.  ( A [,] B
)  /\  U  <  ( F `  B ) ) )
158, 10, 14sylanbrc 417 . 2  |-  ( ph  ->  B  e.  R )
16 eleq1 2256 . . 3  |-  ( r  =  B  ->  (
r  e.  R  <->  B  e.  R ) )
1716rspcev 2864 . 2  |-  ( ( B  e.  ( A [,] B )  /\  B  e.  R )  ->  E. r  e.  ( A [,] B ) r  e.  R )
188, 15, 17syl2anc 411 1  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473   {crab 2476    C_ wss 3153   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   RR*cxr 8053    < clt 8054    <_ cle 8055   [,]cicc 9957   -cn->ccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-icc 9961
This theorem is referenced by:  ivthinclemex  14796
  Copyright terms: Public domain W3C validator