| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemum | Unicode version | ||
| Description: Lemma for ivthinc 15230. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivth.9 |
|
| ivthinc.i |
|
| ivthinclem.l |
|
| ivthinclem.r |
|
| Ref | Expression |
|---|---|
| ivthinclemum |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 |
. . . 4
| |
| 2 | 1 | rexrd 8157 |
. . 3
|
| 3 | ivth.2 |
. . . 4
| |
| 4 | 3 | rexrd 8157 |
. . 3
|
| 5 | ivth.4 |
. . . 4
| |
| 6 | 1, 3, 5 | ltled 8226 |
. . 3
|
| 7 | ubicc2 10142 |
. . 3
| |
| 8 | 2, 4, 6, 7 | syl3anc 1250 |
. 2
|
| 9 | ivth.9 |
. . . 4
| |
| 10 | 9 | simprd 114 |
. . 3
|
| 11 | fveq2 5599 |
. . . . 5
| |
| 12 | 11 | breq2d 4071 |
. . . 4
|
| 13 | ivthinclem.r |
. . . 4
| |
| 14 | 12, 13 | elrab2 2939 |
. . 3
|
| 15 | 8, 10, 14 | sylanbrc 417 |
. 2
|
| 16 | eleq1 2270 |
. . 3
| |
| 17 | 16 | rspcev 2884 |
. 2
|
| 18 | 8, 15, 17 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-lttrn 8074 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-icc 10052 |
| This theorem is referenced by: ivthinclemex 15229 |
| Copyright terms: Public domain | W3C validator |