ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemum Unicode version

Theorem ivthinclemum 15107
Description: Lemma for ivthinc 15115. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemum  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
Distinct variable groups:    A, r    w, A    B, r    w, B   
w, F    R, r    w, U
Allowed substitution hints:    ph( x, y, w, r)    A( x, y)    B( x, y)    D( x, y, w, r)    R( x, y, w)    U( x, y, r)    F( x, y, r)    L( x, y, w, r)

Proof of Theorem ivthinclemum
StepHypRef Expression
1 ivth.1 . . . 4  |-  ( ph  ->  A  e.  RR )
21rexrd 8122 . . 3  |-  ( ph  ->  A  e.  RR* )
3 ivth.2 . . . 4  |-  ( ph  ->  B  e.  RR )
43rexrd 8122 . . 3  |-  ( ph  ->  B  e.  RR* )
5 ivth.4 . . . 4  |-  ( ph  ->  A  <  B )
61, 3, 5ltled 8191 . . 3  |-  ( ph  ->  A  <_  B )
7 ubicc2 10107 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
82, 4, 6, 7syl3anc 1250 . 2  |-  ( ph  ->  B  e.  ( A [,] B ) )
9 ivth.9 . . . 4  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
109simprd 114 . . 3  |-  ( ph  ->  U  <  ( F `
 B ) )
11 fveq2 5576 . . . . 5  |-  ( w  =  B  ->  ( F `  w )  =  ( F `  B ) )
1211breq2d 4056 . . . 4  |-  ( w  =  B  ->  ( U  <  ( F `  w )  <->  U  <  ( F `  B ) ) )
13 ivthinclem.r . . . 4  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
1412, 13elrab2 2932 . . 3  |-  ( B  e.  R  <->  ( B  e.  ( A [,] B
)  /\  U  <  ( F `  B ) ) )
158, 10, 14sylanbrc 417 . 2  |-  ( ph  ->  B  e.  R )
16 eleq1 2268 . . 3  |-  ( r  =  B  ->  (
r  e.  R  <->  B  e.  R ) )
1716rspcev 2877 . 2  |-  ( ( B  e.  ( A [,] B )  /\  B  e.  R )  ->  E. r  e.  ( A [,] B ) r  e.  R )
188, 15, 17syl2anc 411 1  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   E.wrex 2485   {crab 2488    C_ wss 3166   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   RR*cxr 8106    < clt 8107    <_ cle 8108   [,]cicc 10013   -cn->ccncf 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037  ax-pre-lttrn 8039
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-icc 10017
This theorem is referenced by:  ivthinclemex  15114
  Copyright terms: Public domain W3C validator