ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemum GIF version

Theorem ivthinclemum 13253
Description: Lemma for ivthinc 13261. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemum (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
Distinct variable groups:   𝐴,𝑟   𝑤,𝐴   𝐵,𝑟   𝑤,𝐵   𝑤,𝐹   𝑅,𝑟   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑟)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑤,𝑟)   𝑅(𝑥,𝑦,𝑤)   𝑈(𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝐿(𝑥,𝑦,𝑤,𝑟)

Proof of Theorem ivthinclemum
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21rexrd 7948 . . 3 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
43rexrd 7948 . . 3 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 8017 . . 3 (𝜑𝐴𝐵)
7 ubicc2 9921 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1228 . 2 (𝜑𝐵 ∈ (𝐴[,]𝐵))
9 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
109simprd 113 . . 3 (𝜑𝑈 < (𝐹𝐵))
11 fveq2 5486 . . . . 5 (𝑤 = 𝐵 → (𝐹𝑤) = (𝐹𝐵))
1211breq2d 3994 . . . 4 (𝑤 = 𝐵 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝐵)))
13 ivthinclem.r . . . 4 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
1412, 13elrab2 2885 . . 3 (𝐵𝑅 ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝐵)))
158, 10, 14sylanbrc 414 . 2 (𝜑𝐵𝑅)
16 eleq1 2229 . . 3 (𝑟 = 𝐵 → (𝑟𝑅𝐵𝑅))
1716rspcev 2830 . 2 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐵𝑅) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
188, 15, 17syl2anc 409 1 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2445  {crab 2448  wss 3116   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  *cxr 7932   < clt 7933  cle 7934  [,]cicc 9827  cnccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-icc 9831
This theorem is referenced by:  ivthinclemex  13260
  Copyright terms: Public domain W3C validator