| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemum | GIF version | ||
| Description: Lemma for ivthinc 15311. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
| ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
| ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
| ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
| Ref | Expression |
|---|---|
| ivthinclemum | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 8192 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | ivth.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | rexrd 8192 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 5 | ivth.4 | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 6 | 1, 3, 5 | ltled 8261 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 7 | ubicc2 10177 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
| 8 | 2, 4, 6, 7 | syl3anc 1271 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 9 | ivth.9 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
| 10 | 9 | simprd 114 | . . 3 ⊢ (𝜑 → 𝑈 < (𝐹‘𝐵)) |
| 11 | fveq2 5626 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐹‘𝑤) = (𝐹‘𝐵)) | |
| 12 | 11 | breq2d 4094 | . . . 4 ⊢ (𝑤 = 𝐵 → (𝑈 < (𝐹‘𝑤) ↔ 𝑈 < (𝐹‘𝐵))) |
| 13 | ivthinclem.r | . . . 4 ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | |
| 14 | 12, 13 | elrab2 2962 | . . 3 ⊢ (𝐵 ∈ 𝑅 ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹‘𝐵))) |
| 15 | 8, 10, 14 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑅) |
| 16 | eleq1 2292 | . . 3 ⊢ (𝑟 = 𝐵 → (𝑟 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅)) | |
| 17 | 16 | rspcev 2907 | . 2 ⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ 𝑅) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
| 18 | 8, 15, 17 | syl2anc 411 | 1 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 {crab 2512 ⊆ wss 3197 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 ℝcr 7994 ℝ*cxr 8176 < clt 8177 ≤ cle 8178 [,]cicc 10083 –cn→ccncf 15238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-icc 10087 |
| This theorem is referenced by: ivthinclemex 15310 |
| Copyright terms: Public domain | W3C validator |