![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ivthinclemum | GIF version |
Description: Lemma for ivthinc 14124. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
Ref | Expression |
---|---|
ivthinclemum | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | rexrd 8007 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
3 | ivth.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | rexrd 8007 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
5 | ivth.4 | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐵) | |
6 | 1, 3, 5 | ltled 8076 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
7 | ubicc2 9985 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
8 | 2, 4, 6, 7 | syl3anc 1238 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
9 | ivth.9 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
10 | 9 | simprd 114 | . . 3 ⊢ (𝜑 → 𝑈 < (𝐹‘𝐵)) |
11 | fveq2 5516 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐹‘𝑤) = (𝐹‘𝐵)) | |
12 | 11 | breq2d 4016 | . . . 4 ⊢ (𝑤 = 𝐵 → (𝑈 < (𝐹‘𝑤) ↔ 𝑈 < (𝐹‘𝐵))) |
13 | ivthinclem.r | . . . 4 ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | |
14 | 12, 13 | elrab2 2897 | . . 3 ⊢ (𝐵 ∈ 𝑅 ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹‘𝐵))) |
15 | 8, 10, 14 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑅) |
16 | eleq1 2240 | . . 3 ⊢ (𝑟 = 𝐵 → (𝑟 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅)) | |
17 | 16 | rspcev 2842 | . 2 ⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ 𝑅) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
18 | 8, 15, 17 | syl2anc 411 | 1 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 {crab 2459 ⊆ wss 3130 class class class wbr 4004 ‘cfv 5217 (class class class)co 5875 ℂcc 7809 ℝcr 7810 ℝ*cxr 7991 < clt 7992 ≤ cle 7993 [,]cicc 9891 –cn→ccncf 14060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-pre-ltirr 7923 ax-pre-lttrn 7925 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-icc 9895 |
This theorem is referenced by: ivthinclemex 14123 |
Copyright terms: Public domain | W3C validator |