ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemum GIF version

Theorem ivthinclemum 14871
Description: Lemma for ivthinc 14879. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemum (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
Distinct variable groups:   𝐴,𝑟   𝑤,𝐴   𝐵,𝑟   𝑤,𝐵   𝑤,𝐹   𝑅,𝑟   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑟)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑤,𝑟)   𝑅(𝑥,𝑦,𝑤)   𝑈(𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝐿(𝑥,𝑦,𝑤,𝑟)

Proof of Theorem ivthinclemum
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21rexrd 8076 . . 3 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
43rexrd 8076 . . 3 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 8145 . . 3 (𝜑𝐴𝐵)
7 ubicc2 10060 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1249 . 2 (𝜑𝐵 ∈ (𝐴[,]𝐵))
9 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
109simprd 114 . . 3 (𝜑𝑈 < (𝐹𝐵))
11 fveq2 5558 . . . . 5 (𝑤 = 𝐵 → (𝐹𝑤) = (𝐹𝐵))
1211breq2d 4045 . . . 4 (𝑤 = 𝐵 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝐵)))
13 ivthinclem.r . . . 4 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
1412, 13elrab2 2923 . . 3 (𝐵𝑅 ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝐵)))
158, 10, 14sylanbrc 417 . 2 (𝜑𝐵𝑅)
16 eleq1 2259 . . 3 (𝑟 = 𝐵 → (𝑟𝑅𝐵𝑅))
1716rspcev 2868 . 2 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐵𝑅) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
188, 15, 17syl2anc 411 1 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  {crab 2479  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  *cxr 8060   < clt 8061  cle 8062  [,]cicc 9966  cnccncf 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-icc 9970
This theorem is referenced by:  ivthinclemex  14878
  Copyright terms: Public domain W3C validator