ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemum GIF version

Theorem ivthinclemum 15182
Description: Lemma for ivthinc 15190. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemum (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
Distinct variable groups:   𝐴,𝑟   𝑤,𝐴   𝐵,𝑟   𝑤,𝐵   𝑤,𝐹   𝑅,𝑟   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑟)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑤,𝑟)   𝑅(𝑥,𝑦,𝑤)   𝑈(𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝐿(𝑥,𝑦,𝑤,𝑟)

Proof of Theorem ivthinclemum
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21rexrd 8142 . . 3 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
43rexrd 8142 . . 3 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 8211 . . 3 (𝜑𝐴𝐵)
7 ubicc2 10127 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1250 . 2 (𝜑𝐵 ∈ (𝐴[,]𝐵))
9 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
109simprd 114 . . 3 (𝜑𝑈 < (𝐹𝐵))
11 fveq2 5589 . . . . 5 (𝑤 = 𝐵 → (𝐹𝑤) = (𝐹𝐵))
1211breq2d 4063 . . . 4 (𝑤 = 𝐵 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝐵)))
13 ivthinclem.r . . . 4 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
1412, 13elrab2 2936 . . 3 (𝐵𝑅 ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝐵)))
158, 10, 14sylanbrc 417 . 2 (𝜑𝐵𝑅)
16 eleq1 2269 . . 3 (𝑟 = 𝐵 → (𝑟𝑅𝐵𝑅))
1716rspcev 2881 . 2 ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐵𝑅) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
188, 15, 17syl2anc 411 1 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486  {crab 2489  wss 3170   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  *cxr 8126   < clt 8127  cle 8128  [,]cicc 10033  cnccncf 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-pre-ltirr 8057  ax-pre-lttrn 8059
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-icc 10037
This theorem is referenced by:  ivthinclemex  15189
  Copyright terms: Public domain W3C validator