| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemum | GIF version | ||
| Description: Lemma for ivthinc 15190. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
| ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
| ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
| ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
| Ref | Expression |
|---|---|
| ivthinclemum | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | rexrd 8142 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 3 | ivth.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | rexrd 8142 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 5 | ivth.4 | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 6 | 1, 3, 5 | ltled 8211 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 7 | ubicc2 10127 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
| 8 | 2, 4, 6, 7 | syl3anc 1250 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 9 | ivth.9 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
| 10 | 9 | simprd 114 | . . 3 ⊢ (𝜑 → 𝑈 < (𝐹‘𝐵)) |
| 11 | fveq2 5589 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐹‘𝑤) = (𝐹‘𝐵)) | |
| 12 | 11 | breq2d 4063 | . . . 4 ⊢ (𝑤 = 𝐵 → (𝑈 < (𝐹‘𝑤) ↔ 𝑈 < (𝐹‘𝐵))) |
| 13 | ivthinclem.r | . . . 4 ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | |
| 14 | 12, 13 | elrab2 2936 | . . 3 ⊢ (𝐵 ∈ 𝑅 ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹‘𝐵))) |
| 15 | 8, 10, 14 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑅) |
| 16 | eleq1 2269 | . . 3 ⊢ (𝑟 = 𝐵 → (𝑟 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅)) | |
| 17 | 16 | rspcev 2881 | . 2 ⊢ ((𝐵 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ 𝑅) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
| 18 | 8, 15, 17 | syl2anc 411 | 1 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 {crab 2489 ⊆ wss 3170 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 ℂcc 7943 ℝcr 7944 ℝ*cxr 8126 < clt 8127 ≤ cle 8128 [,]cicc 10033 –cn→ccncf 15117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltirr 8057 ax-pre-lttrn 8059 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-icc 10037 |
| This theorem is referenced by: ivthinclemex 15189 |
| Copyright terms: Public domain | W3C validator |