ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2sub Unicode version

Theorem le2sub 8353
Description: Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 14-Apr-2016.)
Assertion
Ref Expression
le2sub  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  D  <_  B
)  ->  ( A  -  B )  <_  ( C  -  D )
) )

Proof of Theorem le2sub
StepHypRef Expression
1 simpll 519 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
2 simprl 521 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
3 simplr 520 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
4 lesub1 8348 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  ( A  <_  C  <->  ( A  -  B )  <_  ( C  -  B )
) )
51, 2, 3, 4syl3anc 1227 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <_  C  <->  ( A  -  B )  <_  ( C  -  B ) ) )
6 simprr 522 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
7 lesub2 8349 . . . 4  |-  ( ( D  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( D  <_  B  <->  ( C  -  B )  <_  ( C  -  D )
) )
86, 3, 2, 7syl3anc 1227 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( D  <_  B  <->  ( C  -  B )  <_  ( C  -  D ) ) )
95, 8anbi12d 465 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  D  <_  B
)  <->  ( ( A  -  B )  <_ 
( C  -  B
)  /\  ( C  -  B )  <_  ( C  -  D )
) ) )
10 resubcl 8156 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
1110adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  -  B
)  e.  RR )
122, 3resubcld 8273 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  -  B
)  e.  RR )
13 resubcl 8156 . . . 4  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  -  D
)  e.  RR )
1413adantl 275 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  -  D
)  e.  RR )
15 letr 7975 . . 3  |-  ( ( ( A  -  B
)  e.  RR  /\  ( C  -  B
)  e.  RR  /\  ( C  -  D
)  e.  RR )  ->  ( ( ( A  -  B )  <_  ( C  -  B )  /\  ( C  -  B )  <_  ( C  -  D
) )  ->  ( A  -  B )  <_  ( C  -  D
) ) )
1611, 12, 14, 15syl3anc 1227 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  -  B )  <_ 
( C  -  B
)  /\  ( C  -  B )  <_  ( C  -  D )
)  ->  ( A  -  B )  <_  ( C  -  D )
) )
179, 16sylbid 149 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  D  <_  B
)  ->  ( A  -  B )  <_  ( C  -  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2135   class class class wbr 3979  (class class class)co 5839   RRcr 7746    <_ cle 7928    - cmin 8063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-addcom 7847  ax-addass 7849  ax-distr 7851  ax-i2m1 7852  ax-0id 7855  ax-rnegex 7856  ax-cnre 7858  ax-pre-ltwlin 7860  ax-pre-ltadd 7863
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066
This theorem is referenced by:  le2subd  8456
  Copyright terms: Public domain W3C validator