ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2sub Unicode version

Theorem le2sub 8187
Description: Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 14-Apr-2016.)
Assertion
Ref Expression
le2sub  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  D  <_  B
)  ->  ( A  -  B )  <_  ( C  -  D )
) )

Proof of Theorem le2sub
StepHypRef Expression
1 simpll 501 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
2 simprl 503 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
3 simplr 502 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
4 lesub1 8182 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  ( A  <_  C  <->  ( A  -  B )  <_  ( C  -  B )
) )
51, 2, 3, 4syl3anc 1199 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <_  C  <->  ( A  -  B )  <_  ( C  -  B ) ) )
6 simprr 504 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
7 lesub2 8183 . . . 4  |-  ( ( D  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( D  <_  B  <->  ( C  -  B )  <_  ( C  -  D )
) )
86, 3, 2, 7syl3anc 1199 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( D  <_  B  <->  ( C  -  B )  <_  ( C  -  D ) ) )
95, 8anbi12d 462 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  D  <_  B
)  <->  ( ( A  -  B )  <_ 
( C  -  B
)  /\  ( C  -  B )  <_  ( C  -  D )
) ) )
10 resubcl 7990 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
1110adantr 272 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  -  B
)  e.  RR )
122, 3resubcld 8107 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  -  B
)  e.  RR )
13 resubcl 7990 . . . 4  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  -  D
)  e.  RR )
1413adantl 273 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  -  D
)  e.  RR )
15 letr 7811 . . 3  |-  ( ( ( A  -  B
)  e.  RR  /\  ( C  -  B
)  e.  RR  /\  ( C  -  D
)  e.  RR )  ->  ( ( ( A  -  B )  <_  ( C  -  B )  /\  ( C  -  B )  <_  ( C  -  D
) )  ->  ( A  -  B )  <_  ( C  -  D
) ) )
1611, 12, 14, 15syl3anc 1199 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  -  B )  <_ 
( C  -  B
)  /\  ( C  -  B )  <_  ( C  -  D )
)  ->  ( A  -  B )  <_  ( C  -  D )
) )
179, 16sylbid 149 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  D  <_  B
)  ->  ( A  -  B )  <_  ( C  -  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   RRcr 7583    <_ cle 7765    - cmin 7897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltwlin 7697  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900
This theorem is referenced by:  le2subd  8289
  Copyright terms: Public domain W3C validator