![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resubcld | Unicode version |
Description: Closure law for subtraction of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
resubcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
resubcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | resubcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | resubcl 7744 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 403 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-setind 4353 ax-resscn 7435 ax-1cn 7436 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-addcom 7443 ax-addass 7445 ax-distr 7447 ax-i2m1 7448 ax-0id 7451 ax-rnegex 7452 ax-cnre 7454 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-iota 4980 df-fun 5017 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-sub 7653 df-neg 7654 |
This theorem is referenced by: ltsubadd 7908 lesubadd 7910 ltaddsub 7912 leaddsub 7914 lesub1 7932 lesub2 7933 ltsub1 7934 ltsub2 7935 lt2sub 7936 le2sub 7937 rereim 8061 ltmul1a 8066 cru 8077 lemul1a 8317 ztri3or 8791 lincmb01cmp 9418 iccf1o 9419 rebtwn2z 9662 qbtwnrelemcalc 9663 qbtwnre 9664 intfracq 9723 modqval 9727 modqlt 9736 modqsubdir 9796 ser3le 9949 expnbnd 10073 crre 10287 remullem 10301 recvguniqlem 10423 resqrexlemover 10439 resqrexlemcalc2 10444 resqrexlemcalc3 10445 resqrexlemnmsq 10446 resqrexlemnm 10447 resqrexlemcvg 10448 resqrexlemglsq 10451 resqrexlemga 10452 fzomaxdiflem 10541 caubnd2 10546 amgm2 10547 icodiamlt 10609 qdenre 10631 maxabslemab 10635 maxabslemlub 10636 maxltsup 10647 mulcn2 10697 climle 10718 climsqz 10719 climsqz2 10720 climcvg1nlem 10734 fsumle 10853 cvgratnnlembern 10913 cvgratnnlemsumlt 10918 cvgratnnlemfm 10919 cvgratnnlemrate 10920 cvgratnn 10921 efltim 10984 sin01bnd 11044 sin01gt0 11048 |
Copyright terms: Public domain | W3C validator |