ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssubg Unicode version

Theorem lsssubg 14341
Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.)
Hypothesis
Ref Expression
lsssubg.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsssubg  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)

Proof of Theorem lsssubg
Dummy variables  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 lsssubg.s . . 3  |-  S  =  ( LSubSp `  W )
31, 2lssssg 14324 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
4 eqid 2229 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
54, 2lss0cl 14333 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( 0g `  W )  e.  U )
6 elex2 2816 . . 3  |-  ( ( 0g `  W )  e.  U  ->  E. w  w  e.  U )
75, 6syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  E. w  w  e.  U )
8 eqid 2229 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
98, 2lssvacl 14329 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( x ( +g  `  W ) y )  e.  U )
109anassrs 400 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  x  e.  U )  /\  y  e.  U )  ->  (
x ( +g  `  W
) y )  e.  U )
1110ralrimiva 2603 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  A. y  e.  U  ( x
( +g  `  W ) y )  e.  U
)
12 eqid 2229 . . . . . 6  |-  ( invg `  W )  =  ( invg `  W )
132, 12lssvnegcl 14340 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  (
( invg `  W ) `  x
)  e.  U )
14133expa 1227 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( ( invg `  W ) `
 x )  e.  U )
1511, 14jca 306 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) )
1615ralrimiva 2603 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) )
17 lmodgrp 14258 . . . 4  |-  ( W  e.  LMod  ->  W  e. 
Grp )
1817adantr 276 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  Grp )
191, 8, 12issubg2m 13726 . . 3  |-  ( W  e.  Grp  ->  ( U  e.  (SubGrp `  W
)  <->  ( U  C_  ( Base `  W )  /\  E. w  w  e.  U  /\  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) ) ) )
2018, 19syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  e.  (SubGrp `  W
)  <->  ( U  C_  ( Base `  W )  /\  E. w  w  e.  U  /\  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) ) ) )
213, 7, 16, 20mpbir3and 1204 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  SubGrpcsubg 13704   LModclmod 14251   LSubSpclss 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-sca 13126  df-vsca 13127  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707  df-mgp 13884  df-ur 13923  df-ring 13961  df-lmod 14253  df-lssm 14317
This theorem is referenced by:  lsssssubg  14342  islss3  14343  islss4  14346  lspsnsubg  14360
  Copyright terms: Public domain W3C validator