ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssubg Unicode version

Theorem lsssubg 13933
Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.)
Hypothesis
Ref Expression
lsssubg.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsssubg  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)

Proof of Theorem lsssubg
Dummy variables  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 lsssubg.s . . 3  |-  S  =  ( LSubSp `  W )
31, 2lssssg 13916 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
4 eqid 2196 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
54, 2lss0cl 13925 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( 0g `  W )  e.  U )
6 elex2 2779 . . 3  |-  ( ( 0g `  W )  e.  U  ->  E. w  w  e.  U )
75, 6syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  E. w  w  e.  U )
8 eqid 2196 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
98, 2lssvacl 13921 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( x ( +g  `  W ) y )  e.  U )
109anassrs 400 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  x  e.  U )  /\  y  e.  U )  ->  (
x ( +g  `  W
) y )  e.  U )
1110ralrimiva 2570 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  A. y  e.  U  ( x
( +g  `  W ) y )  e.  U
)
12 eqid 2196 . . . . . 6  |-  ( invg `  W )  =  ( invg `  W )
132, 12lssvnegcl 13932 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  (
( invg `  W ) `  x
)  e.  U )
14133expa 1205 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( ( invg `  W ) `
 x )  e.  U )
1511, 14jca 306 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) )
1615ralrimiva 2570 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) )
17 lmodgrp 13850 . . . 4  |-  ( W  e.  LMod  ->  W  e. 
Grp )
1817adantr 276 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  Grp )
191, 8, 12issubg2m 13319 . . 3  |-  ( W  e.  Grp  ->  ( U  e.  (SubGrp `  W
)  <->  ( U  C_  ( Base `  W )  /\  E. w  w  e.  U  /\  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) ) ) )
2018, 19syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  e.  (SubGrp `  W
)  <->  ( U  C_  ( Base `  W )  /\  E. w  w  e.  U  /\  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) ) ) )
213, 7, 16, 20mpbir3and 1182 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133  SubGrpcsubg 13297   LModclmod 13843   LSubSpclss 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845  df-lssm 13909
This theorem is referenced by:  lsssssubg  13934  islss3  13935  islss4  13938  lspsnsubg  13952
  Copyright terms: Public domain W3C validator