ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssubg Unicode version

Theorem lsssubg 14139
Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.)
Hypothesis
Ref Expression
lsssubg.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsssubg  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)

Proof of Theorem lsssubg
Dummy variables  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 lsssubg.s . . 3  |-  S  =  ( LSubSp `  W )
31, 2lssssg 14122 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
4 eqid 2205 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
54, 2lss0cl 14131 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( 0g `  W )  e.  U )
6 elex2 2788 . . 3  |-  ( ( 0g `  W )  e.  U  ->  E. w  w  e.  U )
75, 6syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  E. w  w  e.  U )
8 eqid 2205 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
98, 2lssvacl 14127 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  U  /\  y  e.  U ) )  -> 
( x ( +g  `  W ) y )  e.  U )
109anassrs 400 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  x  e.  U )  /\  y  e.  U )  ->  (
x ( +g  `  W
) y )  e.  U )
1110ralrimiva 2579 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  A. y  e.  U  ( x
( +g  `  W ) y )  e.  U
)
12 eqid 2205 . . . . . 6  |-  ( invg `  W )  =  ( invg `  W )
132, 12lssvnegcl 14138 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  (
( invg `  W ) `  x
)  e.  U )
14133expa 1206 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( ( invg `  W ) `
 x )  e.  U )
1511, 14jca 306 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) )
1615ralrimiva 2579 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) )
17 lmodgrp 14056 . . . 4  |-  ( W  e.  LMod  ->  W  e. 
Grp )
1817adantr 276 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  Grp )
191, 8, 12issubg2m 13525 . . 3  |-  ( W  e.  Grp  ->  ( U  e.  (SubGrp `  W
)  <->  ( U  C_  ( Base `  W )  /\  E. w  w  e.  U  /\  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) ) ) )
2018, 19syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  e.  (SubGrp `  W
)  <->  ( U  C_  ( Base `  W )  /\  E. w  w  e.  U  /\  A. x  e.  U  ( A. y  e.  U  (
x ( +g  `  W
) y )  e.  U  /\  ( ( invg `  W
) `  x )  e.  U ) ) ) )
213, 7, 16, 20mpbir3and 1183 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333  SubGrpcsubg 13503   LModclmod 14049   LSubSpclss 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-subg 13506  df-mgp 13683  df-ur 13722  df-ring 13760  df-lmod 14051  df-lssm 14115
This theorem is referenced by:  lsssssubg  14140  islss3  14141  islss4  14144  lspsnsubg  14158
  Copyright terms: Public domain W3C validator