ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsslsp Unicode version

Theorem lsslsp 13995
Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025.)
Hypotheses
Ref Expression
lsslsp.x  |-  X  =  ( Ws  U )
lsslsp.m  |-  M  =  ( LSpan `  W )
lsslsp.n  |-  N  =  ( LSpan `  X )
lsslsp.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
lsslsp  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( N `  G )  =  ( M `  G ) )

Proof of Theorem lsslsp
StepHypRef Expression
1 lsslsp.x . . . . 5  |-  X  =  ( Ws  U )
2 lsslsp.l . . . . 5  |-  L  =  ( LSubSp `  W )
31, 2lsslmod 13946 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  X  e.  LMod )
433adant3 1019 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  X  e.  LMod )
5 simp1 999 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  W  e.  LMod )
6 simp3 1001 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  G  C_  U )
7 eqid 2196 . . . . . . . 8  |-  ( Base `  W )  =  (
Base `  W )
87, 2lssssg 13926 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  U  C_  ( Base `  W
) )
983adant3 1019 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  U  C_  ( Base `  W
) )
106, 9sstrd 3194 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  G  C_  ( Base `  W
) )
11 lsslsp.m . . . . . 6  |-  M  =  ( LSpan `  W )
127, 2, 11lspcl 13957 . . . . 5  |-  ( ( W  e.  LMod  /\  G  C_  ( Base `  W
) )  ->  ( M `  G )  e.  L )
135, 10, 12syl2anc 411 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( M `  G )  e.  L )
142, 11lspssp 13969 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( M `  G )  C_  U )
15 eqid 2196 . . . . . 6  |-  ( LSubSp `  X )  =  (
LSubSp `  X )
161, 2, 15lsslss 13947 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  (
( M `  G
)  e.  ( LSubSp `  X )  <->  ( ( M `  G )  e.  L  /\  ( M `  G )  C_  U ) ) )
17163adant3 1019 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  (
( M `  G
)  e.  ( LSubSp `  X )  <->  ( ( M `  G )  e.  L  /\  ( M `  G )  C_  U ) ) )
1813, 14, 17mpbir2and 946 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( M `  G )  e.  ( LSubSp `  X )
)
197, 11lspssid 13966 . . . 4  |-  ( ( W  e.  LMod  /\  G  C_  ( Base `  W
) )  ->  G  C_  ( M `  G
) )
205, 10, 19syl2anc 411 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  G  C_  ( M `  G
) )
21 lsslsp.n . . . 4  |-  N  =  ( LSpan `  X )
2215, 21lspssp 13969 . . 3  |-  ( ( X  e.  LMod  /\  ( M `  G )  e.  ( LSubSp `  X )  /\  G  C_  ( M `
 G ) )  ->  ( N `  G )  C_  ( M `  G )
)
234, 18, 20, 22syl3anc 1249 . 2  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( N `  G )  C_  ( M `  G
) )
241a1i 9 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  X  =  ( Ws  U ) )
25 eqidd 2197 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( Base `  W )  =  ( Base `  W
) )
2624, 25, 5, 9ressbas2d 12756 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  U  =  ( Base `  X
) )
276, 26sseqtrd 3222 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  G  C_  ( Base `  X
) )
28 eqid 2196 . . . . . . 7  |-  ( Base `  X )  =  (
Base `  X )
2928, 15, 21lspcl 13957 . . . . . 6  |-  ( ( X  e.  LMod  /\  G  C_  ( Base `  X
) )  ->  ( N `  G )  e.  ( LSubSp `  X )
)
304, 27, 29syl2anc 411 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( N `  G )  e.  ( LSubSp `  X )
)
311, 2, 15lsslss 13947 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  (
( N `  G
)  e.  ( LSubSp `  X )  <->  ( ( N `  G )  e.  L  /\  ( N `  G )  C_  U ) ) )
32313adant3 1019 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  (
( N `  G
)  e.  ( LSubSp `  X )  <->  ( ( N `  G )  e.  L  /\  ( N `  G )  C_  U ) ) )
3330, 32mpbid 147 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  (
( N `  G
)  e.  L  /\  ( N `  G ) 
C_  U ) )
3433simpld 112 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( N `  G )  e.  L )
3528, 21lspssid 13966 . . . 4  |-  ( ( X  e.  LMod  /\  G  C_  ( Base `  X
) )  ->  G  C_  ( N `  G
) )
364, 27, 35syl2anc 411 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  G  C_  ( N `  G
) )
372, 11lspssp 13969 . . 3  |-  ( ( W  e.  LMod  /\  ( N `  G )  e.  L  /\  G  C_  ( N `  G ) )  ->  ( M `  G )  C_  ( N `  G )
)
385, 34, 36, 37syl3anc 1249 . 2  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( M `  G )  C_  ( N `  G
) )
3923, 38eqssd 3201 1  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( N `  G )  =  ( M `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   ` cfv 5259  (class class class)co 5923   Basecbs 12688   ↾s cress 12689   LModclmod 13853   LSubSpclss 13918   LSpanclspn 13952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-lttrn 7995  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-5 9054  df-6 9055  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-iress 12696  df-plusg 12778  df-mulr 12779  df-sca 12781  df-vsca 12782  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-minusg 13146  df-sbg 13147  df-subg 13310  df-mgp 13487  df-ur 13526  df-ring 13564  df-lmod 13855  df-lssm 13919  df-lsp 13953
This theorem is referenced by:  lss0v  13996
  Copyright terms: Public domain W3C validator