ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsslss Unicode version

Theorem lsslss 14218
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x  |-  X  =  ( Ws  U )
lsslss.s  |-  S  =  ( LSubSp `  W )
lsslss.t  |-  T  =  ( LSubSp `  X )
Assertion
Ref Expression
lsslss  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4  |-  X  =  ( Ws  U )
2 lsslss.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lsslmod 14217 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
4 eqid 2206 . . . 4  |-  ( Xs  V )  =  ( Xs  V )
5 eqid 2206 . . . 4  |-  ( Base `  X )  =  (
Base `  X )
6 lsslss.t . . . 4  |-  T  =  ( LSubSp `  X )
74, 5, 6islss3 14216 . . 3  |-  ( X  e.  LMod  ->  ( V  e.  T  <->  ( V  C_  ( Base `  X
)  /\  ( Xs  V
)  e.  LMod )
) )
83, 7syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  C_  ( Base `  X
)  /\  ( Xs  V
)  e.  LMod )
) )
91a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  =  ( Ws  U ) )
10 eqid 2206 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
1110a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( Base `  W )  =  ( Base `  W
) )
12 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
1310, 2lssssg 14197 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
149, 11, 12, 13ressbas2d 12975 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
1514sseq2d 3227 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  C_  U  <->  V  C_  ( Base `  X ) ) )
1615anbi1d 465 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  C_  ( Base `  X )  /\  ( Xs  V )  e.  LMod ) ) )
17 sstr2 3204 . . . . . . 7  |-  ( V 
C_  U  ->  ( U  C_  ( Base `  W
)  ->  V  C_  ( Base `  W ) ) )
1813, 17mpan9 281 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  V  C_  ( Base `  W ) )
1918biantrurd 305 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Ws  V )  e.  LMod  <->  ( V  C_  ( Base `  W
)  /\  ( Ws  V
)  e.  LMod )
) )
201oveq1i 5967 . . . . . . 7  |-  ( Xs  V )  =  ( ( Ws  U )s  V )
21 simplr 528 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  U  e.  S )
22 simpr 110 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  V  C_  U
)
23 simpll 527 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  W  e.  LMod )
24 ressabsg 12983 . . . . . . . 8  |-  ( ( U  e.  S  /\  V  C_  U  /\  W  e.  LMod )  ->  (
( Ws  U )s  V )  =  ( Ws  V ) )
2521, 22, 23, 24syl3anc 1250 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Ws  U )s  V )  =  ( Ws  V ) )
2620, 25eqtrid 2251 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( Xs  V
)  =  ( Ws  V ) )
2726eleq1d 2275 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Xs  V )  e.  LMod  <->  ( Ws  V )  e.  LMod ) )
28 eqid 2206 . . . . . . 7  |-  ( Ws  V )  =  ( Ws  V )
2928, 10, 2islss3 14216 . . . . . 6  |-  ( W  e.  LMod  ->  ( V  e.  S  <->  ( V  C_  ( Base `  W
)  /\  ( Ws  V
)  e.  LMod )
) )
3029ad2antrr 488 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( V  e.  S  <->  ( V  C_  ( Base `  W )  /\  ( Ws  V )  e.  LMod ) ) )
3119, 27, 303bitr4d 220 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Xs  V )  e.  LMod  <->  V  e.  S ) )
3231pm5.32da 452 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  C_  U  /\  V  e.  S
) ) )
3332biancomd 271 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  e.  S  /\  V  C_  U ) ) )
348, 16, 333bitr2d 216 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    C_ wss 3170   ` cfv 5280  (class class class)co 5957   Basecbs 12907   ↾s cress 12908   LModclmod 14124   LSubSpclss 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-sbg 13412  df-subg 13581  df-mgp 13758  df-ur 13797  df-ring 13835  df-lmod 14126  df-lssm 14190
This theorem is referenced by:  lsslsp  14266
  Copyright terms: Public domain W3C validator