ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsslss Unicode version

Theorem lsslss 14085
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x  |-  X  =  ( Ws  U )
lsslss.s  |-  S  =  ( LSubSp `  W )
lsslss.t  |-  T  =  ( LSubSp `  X )
Assertion
Ref Expression
lsslss  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4  |-  X  =  ( Ws  U )
2 lsslss.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lsslmod 14084 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
4 eqid 2204 . . . 4  |-  ( Xs  V )  =  ( Xs  V )
5 eqid 2204 . . . 4  |-  ( Base `  X )  =  (
Base `  X )
6 lsslss.t . . . 4  |-  T  =  ( LSubSp `  X )
74, 5, 6islss3 14083 . . 3  |-  ( X  e.  LMod  ->  ( V  e.  T  <->  ( V  C_  ( Base `  X
)  /\  ( Xs  V
)  e.  LMod )
) )
83, 7syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  C_  ( Base `  X
)  /\  ( Xs  V
)  e.  LMod )
) )
91a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  =  ( Ws  U ) )
10 eqid 2204 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
1110a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( Base `  W )  =  ( Base `  W
) )
12 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
1310, 2lssssg 14064 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
149, 11, 12, 13ressbas2d 12842 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
1514sseq2d 3222 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  C_  U  <->  V  C_  ( Base `  X ) ) )
1615anbi1d 465 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  C_  ( Base `  X )  /\  ( Xs  V )  e.  LMod ) ) )
17 sstr2 3199 . . . . . . 7  |-  ( V 
C_  U  ->  ( U  C_  ( Base `  W
)  ->  V  C_  ( Base `  W ) ) )
1813, 17mpan9 281 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  V  C_  ( Base `  W ) )
1918biantrurd 305 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Ws  V )  e.  LMod  <->  ( V  C_  ( Base `  W
)  /\  ( Ws  V
)  e.  LMod )
) )
201oveq1i 5953 . . . . . . 7  |-  ( Xs  V )  =  ( ( Ws  U )s  V )
21 simplr 528 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  U  e.  S )
22 simpr 110 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  V  C_  U
)
23 simpll 527 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  W  e.  LMod )
24 ressabsg 12850 . . . . . . . 8  |-  ( ( U  e.  S  /\  V  C_  U  /\  W  e.  LMod )  ->  (
( Ws  U )s  V )  =  ( Ws  V ) )
2521, 22, 23, 24syl3anc 1249 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Ws  U )s  V )  =  ( Ws  V ) )
2620, 25eqtrid 2249 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( Xs  V
)  =  ( Ws  V ) )
2726eleq1d 2273 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Xs  V )  e.  LMod  <->  ( Ws  V )  e.  LMod ) )
28 eqid 2204 . . . . . . 7  |-  ( Ws  V )  =  ( Ws  V )
2928, 10, 2islss3 14083 . . . . . 6  |-  ( W  e.  LMod  ->  ( V  e.  S  <->  ( V  C_  ( Base `  W
)  /\  ( Ws  V
)  e.  LMod )
) )
3029ad2antrr 488 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( V  e.  S  <->  ( V  C_  ( Base `  W )  /\  ( Ws  V )  e.  LMod ) ) )
3119, 27, 303bitr4d 220 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Xs  V )  e.  LMod  <->  V  e.  S ) )
3231pm5.32da 452 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  C_  U  /\  V  e.  S
) ) )
3332biancomd 271 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  e.  S  /\  V  C_  U ) ) )
348, 16, 333bitr2d 216 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175    C_ wss 3165   ` cfv 5270  (class class class)co 5943   Basecbs 12774   ↾s cress 12775   LModclmod 13991   LSubSpclss 14056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-sbg 13279  df-subg 13448  df-mgp 13625  df-ur 13664  df-ring 13702  df-lmod 13993  df-lssm 14057
This theorem is referenced by:  lsslsp  14133
  Copyright terms: Public domain W3C validator