ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsslss Unicode version

Theorem lsslss 13877
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x  |-  X  =  ( Ws  U )
lsslss.s  |-  S  =  ( LSubSp `  W )
lsslss.t  |-  T  =  ( LSubSp `  X )
Assertion
Ref Expression
lsslss  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4  |-  X  =  ( Ws  U )
2 lsslss.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lsslmod 13876 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
4 eqid 2193 . . . 4  |-  ( Xs  V )  =  ( Xs  V )
5 eqid 2193 . . . 4  |-  ( Base `  X )  =  (
Base `  X )
6 lsslss.t . . . 4  |-  T  =  ( LSubSp `  X )
74, 5, 6islss3 13875 . . 3  |-  ( X  e.  LMod  ->  ( V  e.  T  <->  ( V  C_  ( Base `  X
)  /\  ( Xs  V
)  e.  LMod )
) )
83, 7syl 14 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  C_  ( Base `  X
)  /\  ( Xs  V
)  e.  LMod )
) )
91a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  =  ( Ws  U ) )
10 eqid 2193 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
1110a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( Base `  W )  =  ( Base `  W
) )
12 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
1310, 2lssssg 13856 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
149, 11, 12, 13ressbas2d 12686 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
1514sseq2d 3209 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  C_  U  <->  V  C_  ( Base `  X ) ) )
1615anbi1d 465 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  C_  ( Base `  X )  /\  ( Xs  V )  e.  LMod ) ) )
17 sstr2 3186 . . . . . . 7  |-  ( V 
C_  U  ->  ( U  C_  ( Base `  W
)  ->  V  C_  ( Base `  W ) ) )
1813, 17mpan9 281 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  V  C_  ( Base `  W ) )
1918biantrurd 305 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Ws  V )  e.  LMod  <->  ( V  C_  ( Base `  W
)  /\  ( Ws  V
)  e.  LMod )
) )
201oveq1i 5928 . . . . . . 7  |-  ( Xs  V )  =  ( ( Ws  U )s  V )
21 simplr 528 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  U  e.  S )
22 simpr 110 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  V  C_  U
)
23 simpll 527 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  W  e.  LMod )
24 ressabsg 12694 . . . . . . . 8  |-  ( ( U  e.  S  /\  V  C_  U  /\  W  e.  LMod )  ->  (
( Ws  U )s  V )  =  ( Ws  V ) )
2521, 22, 23, 24syl3anc 1249 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Ws  U )s  V )  =  ( Ws  V ) )
2620, 25eqtrid 2238 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( Xs  V
)  =  ( Ws  V ) )
2726eleq1d 2262 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Xs  V )  e.  LMod  <->  ( Ws  V )  e.  LMod ) )
28 eqid 2193 . . . . . . 7  |-  ( Ws  V )  =  ( Ws  V )
2928, 10, 2islss3 13875 . . . . . 6  |-  ( W  e.  LMod  ->  ( V  e.  S  <->  ( V  C_  ( Base `  W
)  /\  ( Ws  V
)  e.  LMod )
) )
3029ad2antrr 488 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( V  e.  S  <->  ( V  C_  ( Base `  W )  /\  ( Ws  V )  e.  LMod ) ) )
3119, 27, 303bitr4d 220 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  V  C_  U
)  ->  ( ( Xs  V )  e.  LMod  <->  V  e.  S ) )
3231pm5.32da 452 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  C_  U  /\  V  e.  S
) ) )
3332biancomd 271 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
( V  C_  U  /\  ( Xs  V )  e.  LMod ) 
<->  ( V  e.  S  /\  V  C_  U ) ) )
348, 16, 333bitr2d 216 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   LModclmod 13783   LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-mgp 13417  df-ur 13456  df-ring 13494  df-lmod 13785  df-lssm 13849
This theorem is referenced by:  lsslsp  13925
  Copyright terms: Public domain W3C validator