| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssssg | GIF version | ||
| Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssssg | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2196 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | lssss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2196 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 5 | eqid 2196 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | lssss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | islssmg 13990 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈))) |
| 8 | 7 | biimpa 296 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
| 9 | 8 | simp1d 1011 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 Scalarcsca 12783 ·𝑠 cvsca 12784 LSubSpclss 13984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-lssm 13985 |
| This theorem is referenced by: lsselg 13993 lssuni 13995 lsssubg 14009 islss3 14011 lsslss 14013 lssintclm 14016 lspid 14029 lspssv 14030 lspssp 14035 lsslsp 14061 lidlss 14108 |
| Copyright terms: Public domain | W3C validator |