![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssssg | GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | β’ π = (Baseβπ) |
lssss.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
lssssg | β’ ((π β π β§ π β π) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
2 | eqid 2177 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
3 | lssss.v | . . . 4 β’ π = (Baseβπ) | |
4 | eqid 2177 | . . . 4 β’ (+gβπ) = (+gβπ) | |
5 | eqid 2177 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
6 | lssss.s | . . . 4 β’ π = (LSubSpβπ) | |
7 | 1, 2, 3, 4, 5, 6 | islssm 13450 | . . 3 β’ (π β π β (π β π β (π β π β§ βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ))βπ β π βπ β π ((π₯( Β·π βπ)π)(+gβπ)π) β π))) |
8 | 7 | biimpa 296 | . 2 β’ ((π β π β§ π β π) β (π β π β§ βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ))βπ β π βπ β π ((π₯( Β·π βπ)π)(+gβπ)π) β π)) |
9 | 8 | simp1d 1009 | 1 β’ ((π β π β§ π β π) β π β π) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 βwex 1492 β wcel 2148 βwral 2455 β wss 3131 βcfv 5218 (class class class)co 5877 Basecbs 12464 +gcplusg 12538 Scalarcsca 12541 Β·π cvsca 12542 LSubSpclss 13447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 df-inn 8922 df-ndx 12467 df-slot 12468 df-base 12470 df-lssm 13448 |
This theorem is referenced by: lsselg 13453 lssuni 13455 lsssubg 13469 islss3 13471 lsslss 13473 lssintclm 13476 lspid 13488 lspssv 13489 lspssp 13494 lsslsp 13520 |
Copyright terms: Public domain | W3C validator |