![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssssg | GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssssg | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2193 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2193 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2193 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islssmg 13857 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈))) |
8 | 7 | biimpa 296 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
9 | 8 | simp1d 1011 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 Scalarcsca 12701 ·𝑠 cvsca 12702 LSubSpclss 13851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 df-lssm 13852 |
This theorem is referenced by: lsselg 13860 lssuni 13862 lsssubg 13876 islss3 13878 lsslss 13880 lssintclm 13883 lspid 13896 lspssv 13897 lspssp 13902 lsslsp 13928 lidlss 13975 |
Copyright terms: Public domain | W3C validator |