| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metres | GIF version | ||
| Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| metres | ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf 15033 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 2 | fdm 5479 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → dom 𝐷 = (𝑋 × 𝑋)) | |
| 3 | metreslem 15062 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
| 5 | inss1 3424 | . . 3 ⊢ (𝑋 ∩ 𝑅) ⊆ 𝑋 | |
| 6 | metres2 15063 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∩ 𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (Met‘(𝑋 ∩ 𝑅))) | |
| 7 | 5, 6 | mpan2 425 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) ∈ (Met‘(𝑋 ∩ 𝑅))) |
| 8 | 4, 7 | eqeltrd 2306 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 × cxp 4717 dom cdm 4719 ↾ cres 4721 ⟶wf 5314 ‘cfv 5318 ℝcr 8006 Metcmet 14509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 ax-rnegex 8116 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-pnf 8191 df-mnf 8192 df-xr 8193 df-xadd 9977 df-xmet 14516 df-met 14517 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |