ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metres GIF version

Theorem metres 13814
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋𝑅)))

Proof of Theorem metres
StepHypRef Expression
1 metf 13782 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
2 fdm 5371 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ → dom 𝐷 = (𝑋 × 𝑋))
3 metreslem 13811 . . 3 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
41, 2, 33syl 17 . 2 (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
5 inss1 3355 . . 3 (𝑋𝑅) ⊆ 𝑋
6 metres2 13812 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))) ∈ (Met‘(𝑋𝑅)))
75, 6mpan2 425 . 2 (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))) ∈ (Met‘(𝑋𝑅)))
84, 7eqeltrd 2254 1 (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cin 3128  wss 3129   × cxp 4624  dom cdm 4626  cres 4628  wf 5212  cfv 5216  cr 7809  Metcmet 13372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907  ax-rnegex 7919
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-map 6649  df-pnf 7992  df-mnf 7993  df-xr 7994  df-xadd 9771  df-xmet 13379  df-met 13380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator